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1 Introduction and Architecture

Large-scale distributed services such as content distribu-
tion networks, peer-to-peer storage, distributed games,
and scientific applications, have recently received sub-
stantial interest from both researchers and industry. At
the same time, shared distributed platforms such as Plan-
etLab [2] and the Grid [6] have become popular envi-
ronments for evaluating and deploying such applications.
Assuming node and/or network characteristics on such
platforms are heterogeneous, and that the user has a moti-
vation (economic, social, or due to the performance prop-
erties of her application) to use a subset of the nodes, a
practical difficulty in the use of such large-scale infras-
tructures centers around locating an appropriate subset of
the system to host a service, computation, or experiment.

This choice of nodes may be dictated by a number
of factors, depending on the application’s characteris-
tics. “Compute-intensive” applications might be par-
ticularly concerned about spare CPU, physical mem-
ory, and disk capacity on candidate nodes. “Network-
intensive” applications, such as content distribution net-
works and security monitoring applications, might be
particularly concerned about placing service instances at
particular network locations—near potential users or at
well-distributed locations in a topology—and on nodes
with low-latency, high-bandwidth links among them-
selves. Other applications, such as distributed multiplayer
games, may be concerned about both types of node at-
tributes, e.g., low load for game logic processing and low
latency to users for good interactive performance.

To automate this node selection process, we have
built SWORD—a decentralized resource discovery ser-
vice that is designed to satisfy queries over an extensi-
ble set of per-node and inter-node measurements that are
relevant to deciding on which nodes of an infrastructure
to place instances of distributed applications. This pa-
per focuses on SWORD’s PlanetLab deployment and the
lessons we have learned from it. The key features of
SWORD’s operation on PlanetLab are its scalable, dis-
tributed query processor for satisfying the multi-attribute
range queries that describe application resource require-
ments, and its ability to support queries over not justper-
nodecharacteristics such as load, but also overinter-node

Figure 1: High-level architecture of SWORD

characteristicssuch as inter-node latency. Other features
of SWORD are described in [11].

A SWORD user begins by specifying requirements for
a set of nodes. Resources are described as a topology
of interconnected groups with required intra-group, inter-
group, and per-node characteristics. For example, a con-
tent distribution service for streaming media might want
several “virtual clusters” of nodes, with each cluster near
one portion of its geographically distributed user base.
Each cluster is an equivalence class that would be com-
posed of machines with sufficient disk space and with suf-
ficiently low latency among nodes in each group to enable
cooperative caching.

SWORD users specify a range of required and pre-
ferred values of per-node and inter-node resource mea-
surements, with varying levels ofpenaltiesfor selecting
nodes that are within the required range but outside the
preferred range. For example, the content distribution ser-
vice might desire 20 ms latency or less among all nodes
within each virtual cluster. However, under constraint, the
service might be satisfied with latencies up to 40 ms, with
correspondingly higher penalty. Latencies greater than
40 ms may be insufficient to support desired performance,
corresponding to infinite penalty. SWORD endeavors to
locate the lowest-penalty configuration that still meets the
user’s requirements.

SWORD’s high-level architecture appears in Figure 1.
The user writes a query expressed in XML (1) and sends



Group NA
NumMachines 4
Required Load [0, 2]
Preferred Load [0, 1] penalty 0.01
Required DiskFree [500, MAX]
Preferred DiskFree [1000, MAX] penalty 5.0
Required AllPairs Latency [0, 40]
Preferred AllPairs Latency [0, 20] penalty 0.5
Required OS [‘‘Linux’’]
Required Location [‘‘NorthAmerica’’, 0, 50]

Group Europe
NumMachines 4
Required Load [0, 2]
Preferred Load [0, 1] penalty 0.01
Required DiskFree [100, MAX]
Preferred DiskFree [1000, MAX] penalty 5.0
Required AllPairs Latency [0, 40]
Preferred AllPairs Latency [0, 20] penalty 0.5
Required OS [‘‘Linux’’]
Required Location [‘‘Europe’’, 0, 50]

InterGroup
Required OnePair Latency NA Europe [0, 100]
Preferred OnePair Latency NA Europe [0, 50] penalty 0.5

Table 1: Sample query.

it over a TCP socket to any node running SWORD (2).
The query is received by the SWORD distributed query
processor component on that node, which issues a dis-
tributed range query corresponding to the requirements
of the requested groups (3). Once all of the results are re-
turned from the distributed range query (4), these “candi-
date” nodes and their associated measurements are passed
to the optimizer (5). The optimizer selects a penalty-
minimizing subset of the candidate nodes and returns a
list of them (along with the attribute measurements that
led to their being selected) to the user (6 and 7). Note that
although the optimization algorithm is not parallelized, if
users employ a mechanism such as DNS round-robin to
choose the SWORD entry point node for each query, then
the optimization is effectively parallelized on a per-query
basis.
1.1 Query Format
A sample query appears in Table 1, an extension of our
earlier example. For clarity of presentation, we have con-
verted SWORD’s XML query syntax into a more human-
readable format that structurally matches the actual XML
syntax.

The first section of the SWORD query specifies con-
straints on single-node and inter-node (node-pair) at-
tributes of desired groups. One set of single-node and
inter-node constraints is associated with each group. All
nodes within a node group have the same single-node and
inter-node constraints, and the description of each node
group also contains the number of nodes that should be in
that group. In the example query,Load,DiskFree, and
Latency are floating point attributes,OS is a string at-
tribute, andLocation is a network coordinate attribute.
By placing requirements on these attributes, the user has
requested two groups: a cluster of four machines in North
America and a cluster of four machines in Europe. The
machines in each group must have load less than 2.0 and
the inter-node latency within each group must be less than
40 ms. The North American nodes must be less than
50 ms from a predefined network coordinate “center” for
North America and have at least 500 MB of free disk

space, and the European nodes must be less than 50 ms
from a predefined “center” for Europe and have at least
100 MB of free disk space. The Preferred lines describe
the shape of the penalty function for each attribute, a full
discussion of which we omit due to space constraints.

The second section of the SWORD query specifies
pairwise constraints between individual members ofdif-
ferentgroups. For example, our sample query specifies
that there must exist at least one node in each group with
at most 100 ms latency to a node in the other group.

1.2 Tracking and Querying Measurements
SWORD collects measurements from reporting nodes
and stores them on a distributed set of server nodes. We
organize these servers using the Bamboo [14] structured
peer-to-peer overlay network, although essentially any
structured peer-to-peer overlay network could be used. In
this paper we refer to such systems as distributed hashta-
bles (DHTs), but SWORD uses only the key-based rout-
ing functionality. On top of the key-based routing inter-
face we build our own soft-state distributed data reposi-
tory.

A node that reportsn single-node attributesA1, A2,
..., An periodically sends a tuple of all of its values for
those attributes to them DHT keysk1, k2, ..., km, with
m <= n, where eachk is computed based on the corre-
sponding value ofA at the time the measurement is sent.
We call each such message ameasurement report. Asso-
ciated with each attribute is a function that maps the value
of an attribute to a 160-bit DHT key. SWORD provides
default mapping functions for its 54 pre-configured at-
tributes and allows the administrator to specify new ones
when a new attribute is added to the system. The map-
ping functions convert measured values from their native
datatype and range to the range of the DHT key space.
The generated key is composed of high-order “attribute
bits” used to partition attributes among subsets of DHT
nodes so as to bound the maximum number of nodes
among which values for an attribute are spread; and low-
order “value bits” and “random bits” used to spread the
expected range of an attribute evenly among all nodes re-
sponsible for that attribute. A second,activelayer of load
balancing can be added to these passive techniques [3],
but active load balancing is not used in our PlanetLab de-
ployment.

Upon receiving a measurement report, a server (DHT
node) stores the tuple in memory. Measurement reports
time out after a configurable multiple of the measure-
ment report interval so that information about dead nodes,
and nodes that have become the responsibility of another
DHT server due to nodes joining or leaving the DHT, is
removed. SWORD uses a multi-attribute range search
mechanism similar to Mercury’s [3] to find nodes meet-
ing the single-node requirements. Once the “candidate
nodes” satisfying all single-node requirements have been



returned, the querying node obtains the inter-node mea-
surements. SWORD includes an implementation of the
Vivaldi network coordinates algorithm [5], and inter-node
latencies are computed from the network coordinates of
the returned nodes. Finally the single-node and inter-node
measurements are sent to the querying node’s optimizer,
which attempts to find a penalty-minimizing assignment
of candidate nodes to groups. The number of candidate
nodes returned from the distributed range query may be
larger than the number of nodes ultimately mapped to
groups; conversely, an insufficient number of nodes may
meet the query’s requirements in which case the request
cannot be satisfied.

1.3 PlanetLab-specific Details
We have run SWORD continuously on about 200 Plan-
etLab nodes for several months as a publicly-accessible
service. To issue a SWORD query, users can download
and run a simple C client from the SWORD web page, or
enter the query into a text form on that web page. Any
SWORD node can receive a query from the C clients and
return results to the user.

To add a new metric to be reported from a node, an ad-
ministrator writes a script or program that measures the
new metric and writes it to a file; this script or program
is then installed as a cron job that runs periodically. Fi-
nally a line is added to the SWORD configuration file on
that node, specifying the attribute’s name, the name of
the Java class containing its value-to-DHT-key mapping
function (or the name of a default datatype to use a built-
in mapping function), and the name of the data file that
will contain its current value. At the next update inter-
val (two minutes in our current PlanetLab deployment),
SWORD will re-read the configuration file and incorpo-
rate the new metric into the measurement report it gener-
ates, without requiring the SWORD process to restart..

SWORD currently generates reports with 54 attributes
from four data sources on each node: the ganglia [15]
daemon running on each node, CoTop [12] invoked peri-
odically on each node, Trumpet [1], and the Vivaldi im-
plementation built into SWORD.

2 Deployment experience
This section presents preliminary performance results
from our deployment of SWORD on PlanetLab, and qual-
itative observations we have made about that deployment.
The performance results are not intended as a highly ac-
curate measure of SWORD’s performance, but primarily
to argue that SWORD’s performance is adequate for it to
serve as a useful tool.

2.1 Feasibility Study

Our first experiment aimed to determine the performance
feasibility of basing SWORD on the DHT-based range
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Figure 2: Performance of DHT-based range search. The
bar at eachx value shows median query latency and90th

and10th percentile latency.

search primitive described earlier. As a baseline work-
load we ran SWORD on approximately 200 PlanetLab
nodes on August 1, 2004. Each node sent an update con-
taining 54 metrics every 2 minutes. We measured the
query latency for a query that retrieves the full range of
one attribute (the node’s one-minute load average) under
four configurations: 1, 40, 80, and 200 queries issued
per minute across the system (evenly distributed among
nodes). Each attribute was mapped to approximately six
nodes; therefore six nodes were visited in satisfying the
range query.

For comparison, we implemented a “centralized” ver-
sion of SWORD in which each update is sent to one ofN

servers at random, and each query is sent to allN servers.
We chose the servers to be machines with low load and
low latency/high bandwidth network links. In contrast,
the nodes used to satisfy a query in the DHT approach
are selected randomly, since nodes choose their DHT IDs
randomly.

Figure 2 shows the performance of the DHT range
search as a function of query rate. We emphasize that
these experiments were conducted over a 4-hour period
during which node and network resource contention var-
ied, and the number of nodes in the system varied slightly.
These results are therefore onlyapproximatelyrepeat-
able. For comparison, the “centralized” version with one
server offered consistently inferior median performance
for query rates of 40 queries/min and above (ranging from
median latency of 728 ms for 1 query/min to 12.5 sec-
onds for 200 queries/min), while the “centralized” ver-
sion with two servers offered consistently superior me-
dian performance for all query rates (with median latency
ranging from 251 ms for 1 query/min to 3.3 seconds for
200 queries/min). This suggests that although DHT-based
SWORD may offer acceptable performance, a non-DHT-
based version with as few as two well-chosen servers may
offer superior performance. The general lesson here is
that users deploying services intended for the scale of



PlanetLab might be wise to consider implementing a sim-
pler “centralized” version first, only moving to a decen-
tralized design if they believe it will substantially improve
some property of the service.

Our next experiment examined optimizer latency as a
function of number of candidate nodes, for a query that
requested two groups of nodes, 4 nodes in each group,
with at most 150 ms inter-node latency within each group,
and all nodes with a varying range of loads ranges that
allowed us to control the number of candidate nodes re-
turned. This experiment showed that even under moder-
ately high load (the optimizer was run on a node with a
load consistently in the 3-4 range, with over two dozen
active slices), and with the worst case of all nodes re-
turned by the distributed query as candidate nodes, the op-
timizer could satisfy the query in less than seven seconds.
Still, this performance is somewhat disappointing, sug-
gesting that we should attempt to improve the optimizer’s
performance and should consider moving the computa-
tion entirely to the (presumably less loaded) user’s ma-
chine rather than running it on the PlanetLab node that
servers as the query’s entry point into SWORD.

2.2 Qualitative Observations
In this section we present several lessons learned from our
deployment and operation of SWORD on PlanetLab for
several months. For each observation, we have italicized
the point we feel generalizes to services beyond SWORD
and likely to future testbeds other than PlanetLab.

The claim has been made that DHTs are important
building blocks becausea service built on top of a DHT
will automatically inherit the DHT’s self-configuration,
self-healing, and scalability. We found this claim to be
largely true. The DHT’s neighbor heartbeat mechanism
and node join bootstrap protocol automatically repartition
the keyspace–and hence the mapping of measurement re-
ports to servers–when DHT nodes join or leave (voluntar-
ily or due to failure or recovery), without the need for op-
erator involvement or application-level heartbeats within
SWORD. We benefit from the DHT’s logarithmic routing
scalability for sending updates, but the number of nodes
touched by a range search query once it reaches the first
node in the range scales linearly with the number of nodes
in the DHT (assuming the queried range remains fixed).
A somewhat more complex range query scheme that fol-
lows routing table pointers rather than successor set point-
ers provides logarithmic scaling [11] but is not currently
used in our SWORD PlanetLab deployment.

Although SWORD benefits as described above from its
tight integration with a DHT, this integration does cause
at least one difficulty. Because PlanetLab is a shared in-
frastructure, the CPU load on a node can become quite
high. This fact interacts badly with Bamboo’s heartbeats,
which declare a node unreachable if it does not respond to
heartbeats within a sufficient time period. The DHT does

not distinguish a heartbeat timeout caused by node or link
failure from one caused by high load on the peer node.
This is arguably a reasonable choice for a DHT, because
nodes with extremely high loads will degrade the perfor-
mance of the DHT and may therefore be best left out of
the system. But it is problematic for SWORD, because
we do want SWORD to run on very highly loaded nodes
(for example, a developer might use SWORD specifically
to find heavily-loaded, resource-constrained nodes). Be-
cause SWORD’s measurement reporting facility is inte-
grated with the DHT, a highly loaded node’s removal
from the DHT prevents it from reporting measurement
updates. In our design of SWORD we aimed to treat
the DHT as a “black box,” not second-guessing param-
eters set for the DHT. A possible solution that does not
require modifying or tuning the DHT, is to separate the
measurement reporting functionality from the DHT and
SWORD query processor. We could build a standalone
reporting “stub” that runs on heavily loaded nodes that
have been excluded from the DHT, and sends its measure-
ments to a DHT node acting as a proxy (much as DHT
nodes serve as a proxy for queries originating outside of
SWORD). That gateway node would insert measurement
reports into SWORD on behalf of non-DHT nodes, and
would proxy queries and their responses on behalf of the
non-DHT nodes. This would allow SWORD to accept
updates and queries from all nodes without requiring the
DHT and SWORD query processor to operate on heavily-
loaded nodes. A generalization of this principle is thatun-
linking of fate sharing between the DHT logic and logic
that does not strictly require the DHTcan reduce the im-
pact that DHT design decisions and parameters have on
an application that uses the DHT.

We used the PlanetLab Application Manager [8] to au-
tomatically restart crashed SWORD instances. It was im-
portant to disable this feature during debugging, since in
that setting a crashed application instance generally in-
dicates a bug that needs to be fixed.Automatic re-start
was a mixed blessingonce we had deployed the service
in “production.” While it allowed SWORD to recover
quickly from node reboots, and allowed us to continue
to provide the service in the face of bugs, it hid transient
bugs. Because periodically collecting logfiles from hun-
dreds of machines to look for restarts is time-consuming
and resource intensive, a more sensible approach is to
automatically email the service operator the most recent
logfile each time the application is restarted on a node.
Restart allows a service to handle failure gracefully–but
at times perhaps too gracefully.

PlanetLab is commonly used to test and deploy scal-
able wide-area services. For some services, such as mon-
itoring, the platform is small enough that centralized so-
lutions may offer adequate performance. It is therefore
tempting to build such services with an interface to ex-



ternal users only at a central data aggregation point. An
example of such a service is Trumpet, which collects and
aggregates per-node event data. Trumpet data can be re-
trieved from the Trumpet server, but it is not available
through a local interface on each node where data is col-
lected. To work around this fact, each SWORD instance
contacts the central server every 15 minutes to retrieve in-
formation about itself, which it then publishes along with
its locally-collected ganglia, CoTop, and network coor-
dinate measurements. The operators of the Trumpet ser-
vice have indicated that they will soon be deploying a de-
centralized version of the service, which will make this
unnecessary. But this technique generalizes to any cen-
tralized data source, at the cost of someinefficiency in
retrieving data into a decentralized system from a central
server rather than from local sources.

Finally, for the purposes of quickly turning our re-
search prototype into a service usable by others, we found
that asimple user interface with semantics close to those
used internallyby SWORD was helpful. Although our
long-term vision for SWORD includes sophisticated user
interfaces that allow service deployers to graphically de-
pict desired deployment configurations and penalty func-
tions, we first wrote a simple C client that sends an
XML file from the user’s disk over a network socket to
SWORD. Two external users have already begun devel-
oping tools that make use of this programmatic interface.
A graphical interface, a more sophisticated query lan-
guage, or a SOAP interface can be layered on top of the
current minimal interface.

3 Related Work and Future Work
We point the reader to closely related work in three ar-
eas: distributed range queries in DHTs [3] [13], Internet
scale query processors that can be used for resource dis-
covery [9] [17] [10], and systems for wide-area resource
discovery [16] [4] [7].

We are developing a GUI to help users describe desired
configurations. We are also adding a mechanism to allow
users, not just administrators, to safely add new attributes
to the system, so that SWORD can be used to query user
application statistics and not just OS-level statistics. Fi-
nally, we plan to integrate SWORD with application de-
ployment tools so that users can quickly deploy their ap-
plication on, and periodically migrate their application to,
the set of nodes that SWORD selects.
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