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ABSTRACT
This paper describes the design and implementation of
SWORD, a scalable resource discovery service for wide-area
distributed systems. SWORD locates a set of machines
matching user-specified constraints on both static and dy-
namic node characteristics, including both single-node and
inter-node characteristics. We explore a range of system ar-
chitectures to determine the appropriate tradeoffs for build-
ing a scalable, highly-available, and efficient resource discov-
ery infrastructure. We describe: i) techniques for efficient
handling of multi-attribute range queries that describe ap-
plication resource requirements; ii) an integrated mechanism
for scalably measuring and querying inter-node attributes
without requiring O(n2) time and space; iii) a mechanism
for users to encode a restricted form of utility function in-
dicating how the system should filter candidate nodes when
more are available than the user needs, and an optimizer
that performs this node selection based on per-node and
inter-node characteristics; and iv) working prototypes of
a variety of architectural alternatives—running the gamut
from centralized to fully distributed—along with a detailed
performance evaluation. SWORD is currently deployed as
a continuously-running service on PlanetLab. We find that
SWORD offers good performance, scalability, and robust-
ness in both an emulated environment and a real-world de-
ployment.

1. INTRODUCTION
Large-scale distributed services such as content distribu-

tion networks, peer-to-peer storage, distributed games, and
scientific applications, have recently received substantial in-
terest from both researchers and industry. At the same time,
shared distributed platforms such as PlanetLab [3] and the
Grid [10, 9] have become popular environments for evaluat-
ing and deploying such services. One significant difficulty in
the practical use of such shared, large-scale infrastructures
centers around locating an appropriate subset of the system
to host a service, computation, or experiment.

This choice may be dictated by a number of factors, de-
pending on the application’s characteristics. “Compute-
intensive” applications, such as embarrassingly parallel sci-
entific applications, might be particularly concerned about
spare CPU, physical memory, and disk capacity on candi-
date nodes. “Network-intensive” applications, such as con-
tent distribution networks and security monitoring applica-

.

tions, might be particularly concerned about placing ser-
vice instances at particular network locations—near poten-
tial users or at well-distributed locations in a topology—
and on nodes with low-latency, high-bandwidth links among
themselves. Hybrid applications, such as massively multi-
player games, may be concerned about both types of node
attributes, e.g., low load for game logic processing and low
latency to users for good interactive performance.

Given our target scenarios, we extract the following key
requirements for any such resource discovery infrastructure.
First, it must scale to large systems, consisting of thou-
sands to tens of thousands machines while remaining highly
available (the entire distributed infrastructure effectively be-
comes unusable by service operators if the resource discovery
infrastructure becomes unavailable, much as the current In-
ternet becomes unusable by service users if DNS becomes
unavailable). Second, it must track both relatively static
and frequently changing node characteristics. For instance,
the system might track relatively static characteristics like
operating system, available software licenses, and network
coordinates [7, 18, 19], as well as more dynamic character-
istics such as currently available CPU, memory, and disk
resources. Third, the system must support an expressive
query language that allows users to specify the ranges of
resource quantities that their application needs, as well as
how to select a utility-maximizing subset of available nodes
when more match the requirements than are requested. Fi-
nally, the system should support queries over not just per-
node characteristics such as load, but also over inter-node

characteristics such as inter-node latency. Many scientific
applications and Internet services require coordination or
data transfer among nodes, so finding appropriate nodes for
such applications requires specifying some minimum level of
network connectivity, for instance placing bounds on max-
imum latency or minimum bandwidth between particular
subsets of nodes (e.g., consider network services that must
apply updates across a set of replicas, fine-grained paral-
lel applications that must synchronize before proceedings
with a computation, or a scientific application that requires
high-speed access to a large data set). Supporting queries
over such inter-node characteristics is particularly challeng-
ing because the information may be rapidly changing and
scales with the square of the number of system participants.
Thus the resource discovery service we envision combines as-
pects of distributed measurement, user utility specification,
distributed query processing, and utility optimization.

A number of recent efforts have explored large-scale re-
source discovery [2, 4, 12, 14, 24, 28, 27, 8]. However, to
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the best of our knowledge, no existing system meets all of
the above requirements. Thus, the principal contribution
of this work is an exploration of the architectural space
surrounding a resource discovery service with these target
characteristics. To this end, we describe the design and
implementation of SWORD, a Scalable Wide-Area Overlay-
based Resource Discovery service. SWORD’s main features
are: i) a scalable, distributed query processor for satisfy-
ing the multi-attribute range queries that describe appli-
cation resource requirements; ii) techniques for passively
and actively balancing load in the range query infrastruc-
ture to account for skewed values in measurements; iii) an
integrated mechanism for scalably measuring and query-
ing inter-node attributes without requiring O(n2) time and
space; iv) a heuristic optimizer that finds (approximately)
utility-maximizing candidate sets of nodes matching user-
specified per-node and inter-node requirements and utility
functions; and v) mechanisms for limiting the running time
and network resource consumption of the distributed query
and optimization. We implement a variety of techniques—
ranging from centralized to fully distributed to a hybrid
approach—for distributing measurements, indexing them,
and retrieving them. One interesting question we consider
is the impact that these various distributed architectures
have on end-to-end performance and network resource uti-
lization.

Our evaluation shows that an architecture based on range
searches in distributed hash tables can perform better than a
“centralized” architecture for some workloads. Additionally,
we find that a “hybrid” approach is promising, in which
data is stored in a distributed hash table but the mapping
of attribute ranges to the DHT node responsible for each
range is stored in a central index.

Although we describe the resource discovery problem as a
one-time only query-processing and optimization problem,
the characteristics of the selected nodes and/or the node
characteristics desired by the application may change over
time. In these cases the application deployer would periodi-
cally reissue a SWORD query (automatically or manually),
and the application would be migrated (automatically or
manually) to the newly-selected set of nodes. Migrating a
stateless or soft-state application (such as SWORD itself)
is easy: the application is killed on the nodes that are no
longer to be used, and is started on the newly-added nodes.
Migrating a stateful application is more difficult, requiring
either an application or OS-level process migration facility,
or use of a virtual machine monitor that supports process
migration.

SWORD is currently deployed as a continuously-running
service on PlanetLab (http://www.swordrd.org). It tracks
over 40 metrics per machine, collected from a combination
of sources (ganglia [23], CoTop [20], and an implementation
of the Vivaldi [7] network coordinates system), as well as
inter-node latency.

The rest of this paper is organized as follows. Section 2
presents a high level level of the SWORD architecture and
Section 3 describes the details of our implementation. We
describe our evaluation infrastructure and our performance
results in Section 4. We present related work in Section 5
before concluding in Section 6.

2. SYSTEM DATA MODEL AND
ARCHITECTURE

The objective of SWORD is to allow end users (appli-
cation deployers) to locate a subset of a global computa-
tion and communication infrastructure to host their appli-
cation. Our approach is general to models where either the
resource discovery infrastructure: i) is one of a number of
systems monitoring global system characteristics and an-
swering queries over that monitoring data, or ii) runs in
isolation and also controls the allocation of resources to end
users. Users begin by specifying requirements for a set of
nodes. Resource specifications center around the notion of
groups that capture equivalence classes of nodes with similar
characteristics. For example, a content distribution service
for streaming media might want several “virtual clusters” of
nodes, with each cluster near one portion of its geographi-
cally distributed user base. Each cluster is an equivalence
class. Each cluster would be composed of machines with
enough disk space to collectively store all of the media files
that users in the cluster’s region might desire, and each clus-
ter would have at least one link of sufficient bandwidth to
one or more content creation sites so that new content could
be quickly distributed to the clusters.

We assume that users will only want to deploy their ap-
plication on a subset of the machines available to them–
otherwise a node resource discovery system such as SWORD
is unnecessary. A number of factors might motivate a user
to limit the nodes on which they deploy their application.
In a shared testbed such as PlanetLab, a user might simply
want to be a “good citizen,” limiting their application to
the minimum set of nodes needed to accomplish the task.
Alternatively, the platform might employ a computational
economy in which users are charged for using node resources;
in that case the motivation for a user to maximize her “bang
for the buck” is obvious. Even in the absence of a financial
or altruistic motivation, the user may find that her appli-
cation actually runs slower when the deployment includes
poorly-performing nodes than it does when the deployment
uses a smaller number of nodes all of which are performing
well; this “performance coupling” effect is common to ap-
plications with static work distributions or significant inter-
node coordination requirements. Finally, the user may be
evaluating the sensitivity of her application to different per-
node resource constraints, network topologies, or network
link characteristics. In that case she is interested not in
maximizing the raw performance of her application, but in
maximizing the closeness of match between the selected re-
sources and an arbitrary experiment description; the goal
is to find the closest embedding of her desired experiment
configuration within the set of available nodes.

SWORD users specify a range of required and desired val-
ues of per-node and inter-node resource measurements, with
varying levels of penalties (costs) for selecting nodes that are
within the required range but outside the desired range. (In
this paper we use the terms cost and penalty interchange-
ably to refer to the quantified “badness” of a choice.) For
example, one application may desire 1 Mb/s of upstream
bandwidth from all of its nodes, corresponding to a cost of
zero. However, under constraint, the user may be satisfied
with bandwidths greater than 512 Kb/s, with correspond-
ingly higher cost. Bandwidths less than 512 Kb/s may be
insufficient to support the application, corresponding to in-
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Figure 1: High-level architecture of SWORD

finite cost. SWORD endeavors to locate the lowest cost
configuration that still meets the users requirements. While
not explicitly explored as part of this work, a fundamental
goal of SWORD is to also allow the specification of some
(perhaps virtual) currency that the user is willing to pay for
a particular configuration. A more sophisticated resource
discovery infrastructure could use such values to perform
adjudication among competing users during periods of high
demand. SWORD itself, however, performs only resource
discovery, not allocation. We expect it to run alongside a
system that performs actual resource allocation.

Given a specification of user requirements, key architec-
tural questions revolve around: i) tracking per-node and
inter-node attributes, ii) determining the set of nodes to
contact to resolve a particular resource discovery query, iii)
optimizing the set of nodes returned to the user based on
the request, and iv) maintaining scalability, availability, and
load balance (of the resource discovery infrastructure) un-
der a range of network conditions and query patterns. The
rest of this section addresses these questions at a high-level,
while Section 3 discuses them in detail.

An abstract representation of the SWORD system archi-
tecture appears in Figure 1. The user writes a query ex-
pressed in SWORD’s XML query language syntax (step 1)
and submits it to any node running SWORD (step 2). This
query is passed to the distributed query processor compo-
nent on that node, which issues an appropriate range query
corresponding to the groups requested in the query (step
3). Although we have shown the query as being issued in
parallel to SWORD nodes that may be storing data needed
to answer the query, we have implemented and evaluated
four range query mechanisms that use a variety of strategies
for directing the query to the nodes that may hold relevant
measurements. Once all of the results are returned from the
distributed range query (step 4), the “candidate nodes” and
their associated measurements are passed to the optimizer
component on the node that originally received the user’s
query (step 5). The optimizer selects a utility-maximizing
subset of the nodes returned from the distributed query and
returns a list of them (along with the attribute measure-
ments that led to their being selected) to the user (steps 6
and 7).

<request>
<dist_query_budget>30</dist_query_budget>
<optimizer_budget>70</optimizer_budget>
<group>

<name>Cluster_NA</name>
<num_machines>4</num_machines>
<cpu_load>0.0, 0.0, 1.0, 2.0, 0.01</cpu_load>
<free_mem>256.0, 512.0, MAX, MAX, 1.0</free_mem>
<free_disk>500.0, 10000.0, MAX, MAX, 5.0</free_disk>
<latency>0.0, 0.0, 10.0, 20.0, 0.5</latency>
<os>

<value>Linux, 0.0</value>
</os>
<network_coordinate_center>

<value>North_America, 0.0</value>
</network_coordinate_center>

</group>
<group>
<name>Cluster_Europe</name>
<num_machines>4</num_machines>
<cpu_load>0.0, 0.0, 1.0, 2.0, 0.01</cpu_load>
<free_mem>256.0, 512.0, MAX, MAX, 1.0</free_mem>
<free_disk>100.0, 10000.0, MAX, MAX, 5.0</free_disk>
<latency>0.0, 0.0, 10.0, 20.0, 0.5</latency>
<os>

<value>Linux, 0.0</value>
</os>
<network_coordinate_center>

<value>Europe, 0.0</value>
</network_coordinate_center>
</group>
<constraint>

<group_names>Cluster_NA Cluster_Europe</group_names>
<latency>0.0,0.0,50.0,100.0, 0.5</latency>

</constraint>
</request>

Table 1: Sample XML query.

2.1 Query Format
A SWORD query takes the form of an XML document

with three sections. A sample query appears in Table 1, re-
questing two four-node clusters: one in North America and
one in Europe. These clusters might be used by a computer
animation studio to cache content that users download, with
the expected user bases concentrated in North America and
Europe. The machines in each cluster must have sufficiently
low load and free memory to provide the service, and suf-
ficient disk space to store the requisite files. We further
assume that the nodes within a cluster perform coopera-
tive caching of files, so that the service operator wants low
network latency among all nodes in a cluster. Finally, we as-
sume that the two clusters occasionally coordinate between
themselves, and that therefore there must be at least one
network link between the two clusters of sufficiently low la-
tency for this coordination. In the remainder of this section
we describe the SWORD query format and illustrate how
its flexibility allows the animation studio example to be ex-
pressed as a query.

The first section of a SWORD query describes the (op-
tional) resource consumption constraints the user places on
evaluating the query. These constraints allow the user to
trade reduced “quality” of the node selection for reduced
network resource consumption in evaluating the distributed
query and reduced running time of the optimization step in
which candidate nodes are culled to a final approximately-
optimal set. The <dist query budget> limits either the
maximum number of SWORD nodes that may participate
in answering a distributed query or the maximum number of
candidates nodes that may be returned to the optimizer by
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the distributed query processor. The <optimizer budget>

limits the running time of the optimizer. In the example
query, the user is allowing at most 70 nodes to be visited in
processing the distributed query, and at most 30 seconds of
running time for the optimizer.

The second section of the SWORD query specifies con-
straints on single-node and inter-node attributes of de-
sired groups. In this paper we use the term “single-node
attribute” for attributes that describe a single node in
isolation—such as load, free disk space, number of network
bytes sent during the last minute, or network coordinates—
and the term “inter-node attribute” to describe attributes
particular to pairs of nodes—such as latency, bandwidth,
or loss rate. One set of single-node and inter-node con-
straints is associated with each of one or more node groups.
All nodes within a node group have the same single-node
and inter-node constraints, and the description of each node
group also contains the number of nodes that should be
in that group. In the example query, cpu load, free mem,
free disk, and latency are double attributes, os is a string
attribute, and network coordinate center is a network co-
ordinate attribute. By placing requirements on these at-
tributes, the user has requested two groups: a cluster of four
machines in North America and a cluster of four machines
in Europe. The machines in each group must have load less
than 2.0, at least 256 MB of free memory, and inter-node
latency within each group of less than 20 ms. The North
American nodes must be within a predefined network co-
ordinate radius of a predefined “center” for North America
and have at least 500 MB of free disk space, and the Euro-
pean nodes must be within a predefined network coordinate
radius of a predefined “center” for Europe and have at least
100 MB of free disk space. We will explain the meaning of
the second element of the <value> lines, and the meaning
of the second, third, and fifth elements of the <cpu load>,
<free mem>, <free disk>, and <latency> lines, shortly.

The third section of the SWORD query specifies pairwise
constraints between individual members of different groups.
For example, our sample query specifies that there must ex-
ist at least one node in each group such that the latency
between that node and at least one node in the other group
is less than 100 ms. Although SWORD can handle any inter-
node measurements, we use latency as the example in this
paper. The assumption is that some external service mea-
sures these inter-node values and reports them to SWORD.

In SWORD, each requirement specifies a restricted form
of a utility function. This family of utility functions is pre-
sumed to correspond to the Quality of Service (performance,
reliability, predictability, etc.) that the application derives
from different values of the various node attributes that af-
fect the QoS. We describe these utility functions as “penalty
functions,” with “penalty” being merely the inverse of util-
ity.

For double attributes, this penalty function has five re-
gions: two regions of infinite penalty where attribute values
are either too high or too low to be useful to the appli-
cation, an “ideal” region of zero penalty, a constant-slope
region of decreasing penalty towards the “ideal” region, and
a constant-slope region of increasing penalty away from the
“ideal” region. In resource discovery queries aimed at find-
ing nodes for deploying an application, each attribute is
likely to make use of only three regions, e.g., a user may
specify that less than 128 MB of free memory is unaccept-

Figure 2: Penalty as a function of measured value
of double attribute

able, between 128 MB and 256 MB of free memory is accept-
able but not ideal, and that more than 256 MB of memory
is ideal. However, resource discovery queries can also be
used to find nodes for evaluating an application under vary-
ing system conditions. For example, a developer may wish
to determine how a service performs when half of its nodes
become temporarily memory constrained. In that case, util-
ity is maximized not by running the application on the set
of nodes that maximizes the application’s QoS, but rather
from running the application on the set of node that most
closely matches the experimental conditions that the devel-
oper is interesting in investigating. In this situation, the
penalty curve’s region of zero penalty might be between 128
MB and 256 MB, with increasing penalty in the regions
64MB-128MB and 256MB-320MB, and infinite penalty in
the regions 0MB-64MB and more than 320MB.

Figure 2 illustrates the generic form of this curve, for the
double requirement:
<attr>abs_min,pref_min,pref_max,abs_max,k</attr>

The purpose of the k is to give all the penalty graphs a con-
sistent unit on the Y-axis. In other words, the k value serves
the double-duty of expressing the relative importance the
user places on the different attributes, and converting from
the disparate units that different attributes have on the X-
axis (bandwidth, CPU load, memory, etc.) into a uniform
unit of “penalty.” In the example query that appeared ear-
lier, the user is indicating that each 0.01 deviation in CPU
load from the ideal, each 1 MB deviation in free memory
from the ideal, each 5 MB deviation in free disk space from
the ideal, and each 0.5ms of inter-node latency deviation
from the ideal, are all equivalent in terms of how much they
hurt the application’s utility.

Figure 3 illustrates the generic form of the penalty curve
for the string requirement
<attr>

<value>name1 name2 name3, p1</value>

<value>name4 name5 name6, p2</value>

</attr>

This penalty curve associated penalty p1 with values name1,
name2, and name3, and penalty p2 with values name4, name5,
and name6. Any other values of the attribute are given an
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Figure 3: Penalty as a function of measured value
of string attribute

infinite penalty.
Network coordinate attribute penalty curves are of the

same form as string attribute penalty curves. Note that
in addition to the network coordinate syntax that appears
in Table 1, SWORD also allows queries that specify an ex-
plicit three-dimensional network coordinate center and ra-
dius. This is useful when the user knows the exact coordi-
nates of the center of the region in which she is interested
and the center does not correspond to a pre-configured loca-
tion that SWORD recognizes, or when she desires a radius
different from the pre-configured one for the area of interest.

The goal of the SWORD optimizer, then, is to minimize
the sum of the penalties associated with the mapping of a
subset of the nodes with non-infinite penalty, to the groups
the user has specified, taking into account single-node penal-
ties, inter-node intra-group penalties, and inter-group penal-
ties.

2.2 Tracking and Querying Global Character-
istics

It is relatively straightforward to build a single-node re-
source discovery tool that processes queries of the format
just described. The tool takes as input a list of the avail-
able nodes and their associated single-node and inter-node
attribute measurements, and a SWORD XML resource re-
quest. It then finds an appropriate set of nodes matching
the description. While such a system is potentially use-
ful, it is limited in its scalability and availability. In par-
ticular, all monitored nodes must periodically report their
measured single-node and inter-node measurements to the
machine running the resource discovery tool, and all users
must contact that one machine for resource discovery re-
quests. Assuming nontrivial metric update rates and query
rates, a single node can become overwhelmed both in terms
of CPU utilization and network bandwidth. Moreover, the
failure of that node makes the resource discovery service un-
available. While these issues can be partially addressed by
implementing the service on a cluster of nodes rather than
on a single node, the cluster and the network link into the
cluster are still points that can become overloaded or fail.

Thus, we set out to determine the conditions under which
it makes sense to distribute the resource discovery process

across multiple, cooperating, geographically diverse nodes.
To this end, SWORD collects single-node and inter-node
measurements from reporting nodes and stores them on a
distributed set of server nodes. Although the reporting
nodes and server nodes are logically separate, throughout
this paper we assume they are the same set of nodes (i.e.,
SWORD runs on the same nodes that are being made avail-
able for users wishing to instantiate services and are there-
fore reporting measurements about themselves). To help
distinguish the two roles a node can play, we use the term
“reporting node” to indicate a node that is periodically send-
ing measurement reports, and “DHT server node” to in-
dicate a node that is part of the SWORD infrastructure
and that therefore receives measurement reports and han-
dles queries from users. We organize this latter set of servers
using the Bamboo [21] structured peer-to-peer overlay net-
work, although any other structured peer-to-peer overlay
network, such as Chord [25] or Pastry [22], could also be
used. Note that in this paper we refer to such systems in-
terchangeably as structured peer-to-peer overlay networks
and distributed hashtables (DHTs), but SWORD uses only
their key-based routing functionality. On top of the key-
based routing interface we build our own soft-state dis-
tributed data repository, the structure of which we will ex-
plain shortly.

For each of the n single-node attributes A1, A2, ..., An

that can appear in a SWORD query, each reporting node pe-
riodically sends a tuple of all of its values for these attributes
to n DHT keys k1, k2, ..., kn, where each km is computed
based on the corresponding value of Am in a way we will de-
scribe shortly. Upon receiving such a tuple, a server (DHT
node) stores the tuple in an in-memory hashtable indexed by
the identity of the node that the report describes. For each
attribute A, the range of possible values of that attribute is
mapped to a contiguous region of the DHT keyspace using
a function fA. Thus, a list can be obtained of all nodes
that are reporting A values in some range xmin − xmax by
visiting the DHT nodes that “own” all DHT keys between
fA(xmin) and fA(xmax). For example, in the simplest case
of a system where all attributes values are integers in the
range 0 to the size of the DHT keyspace, fA could simply
be the identity function. This basic range search mechanism
is alluded to in [15]. As we shall see in Section 3, the need to
handle additional datatypes and limit the number of nodes
that must be visited to satisfy a range query leads us to use
more sophisticated mapping functions.

We assume that reporting and querying nodes are pre-
configured with a default set of attributes and their corre-
sponding fA’s. Additional attributes are added to the sys-
tem when one or more reporting nodes pick a new attribute’s
name and fA, and one or more querying nodes begin issuing
queries using that fA. One mechanism for distributing new
attributes beyond those in the default pre-configured schema
is SWORD itself; reporting nodes can include a list of the
names of the non-default attributes they report, and the
corresponding fA’s, as one of the pre-configured attributes
that they send with each report. All nodes can periodically
probe the full range of this attribute to retrieve all other
node’s schemas, or they can limit the query by node of in-
terest or the time the node first added the attribute to its
schema.

Using the range search primitive described earlier in this
section, we can satisfy SWORD queries as follows. First, for
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<cpu_load>0.0, 2.0</cpu_load>
<free_mem>256.0, MAX</free_mem>
<free_disk>100.0, MAX</free_disk>
<os>

<value>Linux</value>
</os>
<network_coordinate_center>

<value>North_America</value>
<value>Europe</value>

</network_coordinate_center>

Table 2: Union group issued as range query for
query in Table 1.

every group in the query, the querying node makes a list of
all constrained single-node attributes and the region of each
attribute’s corresponding range where cost is non-infinite
(utility is non-zero). Next, the per-group lists are joined
into a single union group that contains, for each attribute
mentioned in any of the per-group lists, a single range from
the lowest to the highest non-infinite-cost values of that at-
tribute among all groups. Table 2 shows the union group
formed from the query in Table 1. Note in particular how
the range search for the <free disk> attribute is for values
greater than 100.0, which is the widest of the two constraints
in the groups (greater than 100.0 for Cluster Europe and
greater than 500.0 for Cluster NA).

Finally one attribute is selected from the union group as
the range search attribute. A distributed query is issued,
that will visit all nodes that might contain reports about
nodes whose value for the range search attribute is within
the union group’s range for that attribute. As each of those
nodes is visited, only reports about nodes meeting all con-
straints in the union group will be returned. Recall that a
node report contains all attributes for that node, making it
feasible to do range searches based on any single attribute
while returning only measurement reports that match all re-
quirements in the union group. In our example query, we
might select the cpu load as our range search attribute; we
then issue a distributed query that visits every node in the
union group cpu load range and returns from those nodes
the identity (and reported attribute tuples) of every node
whose reported value for cpu load, free mem, free disk,
os, and network coordinate meet the criteria in the union
group.

The process described above indicates how single-node
measurements are retrieved by the querying node. But the
original query involves both single-node and inter-node mea-
surements. Thus the next step is to obtain inter-node mea-
surements. Because we expect inter-node measurements (la-
tency, bandwidth, etc.) to change rarely compared to single-
node measurements, it makes little sense to beacon them
frequently to the soft-state DHT-based data repository. In-
stead, we leave those measurements on the nodes that take
the measurements. Thus after retrieving all relevant single-
node attributes from the distributed range search, the query-
ing node contacts each node returned in that query to ob-
tain the relevant inter-node measurements. (We will explain
in Section 3 a mechanism SWORD uses, called “represen-
tatives,” to avoid contacting all returned nodes for their
inter-node measurements.) The single-node and inter-node
results are joined and passed to the optimizer, which com-
putes the utility-maximizing mapping of groups to nodes
and returns that mapping to the user. Users may also choose

to receive the single-node and/or inter-node measurements
corresponding to the selected nodes.

3. IMPLEMENTATION
In this section we describe in detail how

• a SWORD node maps a measurement report (update)
containing its single-node measurements to the server
responsible for holding the update

• SWORD handles inter-node measurements

• a SWORD node issuing a query locates the set of
servers responsible for range of the DHT keyspace cor-
responding to the attribute range to be searched

• the SWORD optimizer uses the user’s XML query
and the node measurements returned from the dis-
tributed query phase to find the (approximately)
utility-maximizing set of nodes (and mapping of those
nodes to groups in the user’s query).

• SWORD balances load among server nodes in the face
of a non-uniform distribution of reported node mea-
surements

3.1 Reporting single-node attributes
The current SWORD implementation allows each at-

tribute to be a double, a string, or a boolean. As mentioned
earlier, each single-node attribute A is associated with a
function fA(x) which maps a value from the range of A to a
contiguous range of the DHT keyspace. This mapping hap-
pens in two steps. First, the value is converted to an integer
within the key range of the DHT, between 0 and (2160)-
1. Second, that value is mapped to an offset into one of N
non-overlapping sub-regions of the DHT keyspace. For ex-
ample, if N=4, the first two sub-regions are 0 to ((2160)/4)-1,
and (2160)/4 to ((2160)/2)-1. These sub-regions serve to re-
duce by a factor of N the maximum number of servers that
a query might need to visit. Each sub-region is responsible
for zero or more attributes. Load balance among sub-regions
is maximized when N is equal to the number of attributes
M that the system tracks; in that case, one disjoint set of
nodes is responsible for storing values for each attribute.
If M < N then some sub-regions will not store values for
any attributes, while if M > N then some sub-regions will
store values for multiple attributes. No matter the rela-
tionship between M and N , the system will still perform
correctly, though possibly at sub-optimal performance, and
search performance will always improve as N is increased
(ignoring any impact on update load balance).

Thus the fA function provides two “passive” load balanc-
ing functions: it maps attributes to disjoint parts of the
keyspace (and hence disjoint sets of server nodes), and it
spreads potentially non-uniform value ranges to more uni-
form DHT key ranges. As an extreme example of the lat-
ter, consider a boolean value. A naive mapping would map
“true” to one DHT key and “false” to another DHT key,
leaving all other DHT keys corresponding to that attribute
unused, and hence leaving some servers in that attribute’s
sub-region unused. A more clever mapping would use a sin-
gle bit to represent the value and would randomize all other
bits (except for the upper bits that map the attribute to a
sub-region). Therefore one can think of the fA function as
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Figure 4: Mapping a measured value to a DHT key.
This mapping is performed once per attribute in the
measurement report, and the entire measurement
report is sent to the calculated DHT key.

operating as shown in Figure 4, where the upper bits are
determined by the identity of the attribute, the middle bits
are determined by the value of the attribute being reported,
and the lower bits are random.

The requirement that an fA function be specified for ev-
ery attribute that can be used as a range search attribute
does not reduce the generality of the system, as default func-
tions for the supported datatypes are supplied by the sys-
tem. SWORD provides four default fA functions:

• The default function for booleans maps “false” values
to one range of the sub-region keys, and “true” values
to a disjoint range of the sub-region. The lower bits are
randomized so that not all “true” or “false” updates
for a particular attribute end up on the same server.

• The default function for strings uses the ASCII rep-
resentation of the string as the index into the sub-
region; long strings are truncated, while short strings
are appended with random bits. This scheme allows
for prefix searches over strings, e.g., all strings begin-
ning with “cat” can be located by searching the range
from the sub-region offset corresponding to “cat” ap-
pended with all 0 bits to fill out the sub-region off-
set, to the DHT key corresponding to “cat” appended
with all 1 bits to fill out the sub-region offset. Note
that string range search is particularly convenient for
searching IP address prefixes, assuming that the user
has chosen to represent IP addresses as strings.

• SWORD offers two default functions for doubles: one
for doubles that are percentages and one for doubles
that are between 0 and MAX DOUBLE. In the for-
mer case the range 0-100 is evenly spread to the size
of a sub-region, and in the latter case the range 0-
MAX DOUBLE is compressed to 0−Z where Z is the
size of a sub-region.

• SWORD nodes may report their network coordi-

nates [7, 18, 19]. We use a custom version of Vivaldi [7]
for SWORD. The network coordinate in each dimen-
sion is treated as a standard double, and each node
additionally publishes a synthetic “z-coordinate” at-
tribute as a bit sequence for the explicit purpose of
enabling range search over network coordinates. This
attribute is computed as the z-coordinate of the n-
dimensional (currently n = 3) network coordinates
of the reporting node. This attribute is not returned
during queries, but it enables multidimensional range
search in the n-dimensional network coordinate space

via a simple linear search over the z-coordinate at-
tribute.

As mentioned earlier, users may add new attributes to
the system at any time. They may choose to use one of
the four default fA functions, or they may define their own
dynamically-loaded function. There is no requirement that
all reporting nodes report the same set of attributes, only
that all reporting nodes use the same fA function for any
given attribute A, and that querying nodes know about the
fA for attributes over which they wish to perform range
search. The DHT servers do not need to know the details
of the various fA functions; the mapping of the update at-
tribute to a DHT key is done by the reporting node, and
the routing of the update to the server is done by the DHT
routing infrastructure. When a report arrives at a server,
the server records the update (containing all single-node at-
tribute names measured by the reporting node and their
measured values) in a hash table indexed by the reporting
node. Our current implementation trusts users to supply
well-behaved fA functions when they add attributes to the
system; SWORD does not currently protect itself against
malicious user code that might infinite loop, cause an appli-
cation crash, etc.

As we have described the system thus far, a node that re-
ports R single-node attributes will periodically route the list
of R measurements it has taken through the DHT to R dis-
tinct DHT keys, thereby enabling subsequent range search
using any of those attributes. To reduce the number of mes-
sages sent per update, SWORD allows each attribute to be
defined as a “key” or a “non-key.” A report, containing
the values of all key and non-key attributes for the report-
ing node, is sent to one DHT key for each key attribute.
Thus only “key” attributes can be used as the attribute
that directs the range search. For example, consider a sys-
tem that defines the key attribute load, the key attribute
free memory, and the non-key attribute MAC address. Users
may search for nodes matching any conjunction of con-
straints over those three attributes, and they will receive
a list of all nodes matching the constraints (and the values
corresponding to all three attributes for each of those nodes),
but SWORD will perform the range search using only the
load or free memory attribute. Although SWORD does not
currently employ a query optimizer to choose which of the
key attributes to use as the range search key, the assumption
is that only a subset of report attributes will be useful in re-
ducing the set of nodes to which a range query is directed.
Thus, the example we gave is reasonable under the assump-
tion that users will be primarily interested in constraining
load or free memory in their queries.

Nodes can send their reports at a frequency interval of
their choosing. In our current implementation, servers store
reports in memory only, i.e., reports are soft state. The
servers periodically time out these reports so that when
a reporting node or its network link fails, that node will
(eventually) no longer appear in the result set of any query.
This soft-state-with-timeout mechanism requires that the
re-publish interval must be no longer than the timeout inter-
val; however, this seems reasonable, as node measurements
are likely to change over fairly short timescales, making fre-
quent re-publishing necessary for accurate query answering.
In particular, using the reliable DHT storage layer rather
than our memory-only storage adds unnecessary network,
processor, and memory overhead by replicating each piece
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of data on multiple nodes, only to change that data soon
thereafter. Note that our use of soft state also provides a
low-overhead mechanism for recovery from failures within
the range search infrastructure: if a DHT server fails, the
next update that the DHT would have routed to that server
will instead be routed to the new server now responsible for
report. (All reports that had been stored on the DHT node
that failed are lost.)

Because the data timeout interval may be several multi-
ples of the update interval (to account for network message
loss), and some measurement values may change substan-
tially over short timescales, multiple versions of a report
(containing measurements taken at different times) may si-
multaneously reside on different servers. If multiple reports
from the same node are returned by the range search, times-
tamps on the reports are compared so that only the most
recent report is returned. But note that the querying node
may occasionally receive an out-of-date report that it can-
not determine is out-of-date. For example, reporting node
R may send update R1 with attribute a=1 and later send
update R2 with attribute a=5. If querying node Q queries
for nodes with a=[0,3], it will receive report R1 because the
R2 report with the more recent timestamp is not within the
requested range query range. However, the maximum stale-
ness of a result is bounded at all times by the report timeout
interval. For example, in our PlanetLab implementation,
the update interval is 2 minutes and the timeout interval is
5 minutes, so no query will be answered with data that is
more than 5 minutes out of date.

3.2 Distributed range search for single-node
attributes

As discussed in Section 2, an XML resource discovery
query with N query attributes is converted to a query
over the conjunction of the N ranges of attributes in those
queries. For each attribute, the range that goes into this
“union group” is the widest range necessary to find all pos-
sible nodes that could satisfy the constraint for any group.
One of the attributes in the query, which must be a “key”
attribute, is selected as the range search attribute. In our
current implementation, this attribute is selected randomly,
and can be overridden explicitly in the query. However,
there is a clear opportunity to optimize the selection of
the range search attribute; the goal of such an optimiza-
tion would be to pick the attribute from the query that will
require the query to visit the fewest number of servers (per-
haps attempting to simultaneously avoid overloading any
particular sub-region across queries).

Once the search attribute A is selected, fA is applied to
the lower and upper bounds of the constraint range to find
the lowest and highest DHT keys corresponding to the range
of the constraint: keylow = fA(constraintmin), keyhigh =
fA(constraintmax). As a special case, if network coordinates
are selected as the range search attribute, then the range of
the DHT keyspace that is searched is the contiguous range
between the smallest and largest z-coordinate to which the
multi-dimensional coordinate ranges in the query map.

The full query is sent to the nodes in the computed DHT
key range. Each node receiving the query applies all con-
straints in the query to the nodes whose reports it holds,
and sends back to the querying node all node reports that
match the conjunction of constraints in the query. We have
implemented and evaluated three range search techniques.

These three mechanisms offer a variety of tradeoffs in per-
formance, robustness, and the network resources consumed
in satisfying the query.

• Leaf-set walk: Figure 5 summarizes this approach. The
query is first routed to the server responsible for a
randomly generated key between keylow and keyhigh.
That node then clones the query and forwards one
clone (via Bamboo’s UdpCC) to each (four, by de-
fault) successor node in its leaf set. Each subsequent
node forwards the query to the farthest successor node
in its leaf set. This process continues until the query
reaches a node that is outside the query range. When
the query reaches the node that owns the maximum
DHT key in the range, that node forwards the query
to the node that owns the minimum key in the query
range. The query completes when it returns to the
node that initially received it. Thus the query eventu-
ally visits all nodes in the range, with four nodes being
visited in parallel.

A query can limit the number of servers visited in two
ways. First, the query can directly specify the max-
imum number N of servers to be visited. In our im-
plementation, the query is dropped when the query
has visited N/4 servers (since each clone of the query
visits one fourth of the nodes in the desired range).
Second, the query can specify the maximum number
M of candidate nodes it desires to visit. In this case,
each server asks the querying node whether it has re-
ceived enough candidate nodes yet, and only forwards
the query to the successor if the querying node has
received an insufficient number so far. This mecha-
nism can be thought of as a callback that the querying
node requires at each server hop before allowing the
forwarding of the query to the next DHT server node.

• Routing table walk: This approach is similar to the
“leaf set walk,” but instead of exploring the transi-
tive closure of the successor set pointers and prun-
ing paths that fall outside the range, the “routing ta-
ble walk” explores the transitive closure of the rout-
ing table pointers and prunes paths that reach out-
side the range. This approach is best illustrated by
example. First, suppose the query range is 1230000
- 1238fff. The query is routed through the DHT to
a random node in the range of the common prefix,
which in this case is a node whose DHT key starts
with 123. Then, that node sends a message to all rele-
vant one-digit extensions, e.g., 1230, 1231, 1232, 1233,
..., 1238. The message instructs those nodes to con-
tact all nodes with that prefix [11]. By extension, the
range 1231000-1232500 can be reached as follows. The
query is first routed to a node whose DHT key starts
with 123. That node sends two message: a “contact
all with prefix” message as in the previous example
is sent to a node with prefix 1231, and a “contact all
nodes less than 12325” message is sent to a node with
prefix 1232. The latter node sends a “contact all with
prefix” message to nodes with prefixes 12320, 12321,
12322, 12323, and 12324, and a “contact all nodes less
than 123250” message to a node with prefix 12325. In
practice, only a single message type is used, specifying
a prefix representing the set that needs to be reached,
and the upper and lower bounds of the query.
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Figure 5: Reports and queries using the leaf set range search strategy. In (a), a copy of each measurement
report is routed to one DHT key for each “key” attribute in the update. In (b), a querying node selects a
random node in the range for attribute a. In this example, the second of three visited DHT nodes contains
values matching the query and returns those values in parallel. Note that steps 3 and 4 take place in parallel
and that the third node has no matching values in this example. We have omitted a final step in which node
10.0.0.3 notices that it owns the top of the query’s range and sends the query back to 10.0.0.1, from which
the “search complete” message is sent to the querying node. Also, we have drawn the strategy as if only one
successor is followed out of each node, but SWORD actually follows all four of each Bamboo node’s successor
links in parallel to reduce query latency.

The main benefit of this approach is that, depend-
ing on the query and the routing base of the DHT, it
can exploit more parallelism than can the leaf set ap-
proach. Additionally, this approach would work with a
DHT that does not use leaf sets, such as Tapestry. The
main drawback of this approach is that the amount
of parallelism is unconstrained; therefore it requires a
callback mechanism like the one we implemented to
limit the number of candidate nodes returned in the
“leaf set walk” if it is desired to avoid flooding the
network quickly if the search range is broad.

• Hybrid: The third range query approach, summarized
in Figure 6, decouples the process of identifying the
set of servers to visit from the process of visiting those
servers. In this “hybrid” approach, every node in the
DHT periodically reports to a central server the range
of the keyspace for which it is responsible. Each query
is routed first to the central server, which can imme-
diately identify the full set of DHT nodes that the
query must visit. The central server forwards a copy
of the query to those nodes simultaneously. Thus the
query is always satisfied in three hops, as opposed to
the leaf-set walk approaches, in which the number of
hops scales with the width of the query range and the
number of nodes in the system. Note that the “cen-
tral server” we refer to here may actually be composed
of multiple machines, perhaps even geographically dis-
tributed. We refer to it as a “central server” to indicate
that it runs on well-connected, dedicated infrastruc-
ture machines that do not participate in the DHT.

In comparing the “hybrid” approach to the pure-DHT ap-
proaches, one can make an analogy to Napster and Gnutella.

Napster, like the hybrid approach, stores the index on a cen-
tral server but stores data (node measurement reports) on
the distributed nodes. Gnutella, like the DHT approaches,
combines querying and routing, and does not build an exter-
nal index. The cost, performance, scalability, and reliability
tradeoffs between our hybrid and DHT approaches are ex-
pected to be similar to those between Napster and Gnutella.

After using one of the three range search mechanisms de-
scribed above, the SWORD distributed query processor con-
tacts via TCP the representatives indicated by the set of
returned nodes to retrieve the pairwise inter-node measure-
ments between nodes in the returned set.

3.3 Inter-node attributes
The aforementioned process retrieves the identities, and

all single-node attributes, of reporting nodes that meet the
single-node constraints in the original query. Unlike existing
resource discovery systems, SWORD adopts the philosophy
that users may wish to take inter-node attributes, such as
latency, bandwidth, and loss rate, into account when select-
ing nodes. Recall that the optimizer (and query semantics)
requires knowledge of both the single-node and inter-node
attributes of candidate nodes. SWORD could handle inter-
node attributes similarly to single-node attributes by having
all reporting nodes measure and send all of their inter-node
measurements along with their single-node measurements,
and retrieving those measurements in the distributed range
query. Instead, SWORD’s handling of inter-node attributes
differs from its handling of single-node attributes in two
ways.

First, to reduce bandwidth usage, measuring nodes store
their inter-node attributes locally rather than routing them
to a remote server. Because we are aware of no efficient
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Figure 6: Reports and queries using the hybrid range search strategy. In (a), each DHT node periodically
informs the index server of the key range for which the DHT node is responsible. In (b), a query is sent to a
logically centralized index infrastructure (drawn here as a single machine) that tracks the range of DHT keys
each node in the DHT is responsible for. The index infrastructure receives each user query and forwards
a copy of it to each DHT node in the appropriate range in parallel. Nodes with matching values for all
attributes in the query (a and b in this example) reply directly back to the querying node. Measurement
report updates are handled as in Figure 5

mechanism to perform range search over pairwise measure-
ments, there is no apparent benefit to storing those mea-
surements in the DHT. We expect that the range search over
the single-node attributes will sufficiently reduce the search
space so that contacting all nodes that qualified based on
their single-node attributes can be done in reasonable time.
(And indeed our experimental evaluation shows this to be
true.)

Second, to reduce measurement overhead, only a subset
of nodes, called “representatives,” measure (and store lo-
cally) inter-node attributes; they act as representatives for
“nearby” nodes that are assumed to possess similar inter-
node measurements. In a system with N nodes, the ap-
proach we have described thus far requires N2 measurements
and N2 storage space for inter-node attributes. To reduce
resource consumption while still allowing high-precision dis-
tributed queries over inter-node attributes, SWORD lever-
ages the observation that nodes typically fall into a number
of equivalence classes for inter-node attributes. For exam-
ple, the bandwidth between node A in Autonomous System
1 and node B in Anonymous System 2, is likely to be similar
to the bandwidth between any node in Autonomous System
1 and any node in Autonomous System 2. SWORD there-
fore allows arbitrary groups of nodes to define a “represen-
tative” responsible for measuring and storing the inter-node
attributes between that group of nodes and all other such
groups. The mapping from each node to its representative is
one of the single-node attributes it reports periodically; this
is essentially an “object location” pointer indicating where
to find the holder of that node’s inter-node measurements.
After a querying node receives the node reports in response
to its range search, it will query (via TCP) all nodes that
serve as representatives for nodes in the returned set, ask-
ing for the inter-node attributes between all pairs of nodes in
that returned set. We anticipate that inter-node measure-

ments will be taken less often than single-node measure-
ments because they are likely to change less frequently, and
because the overhead of measuring between all pairs of rep-
resentatives can make frequent measurement prohibitively
costly. Thus, representatives store inter-node data persis-
tently to protect against data loss in the event that the rep-
resentative fails. SWORD currently makes no attempt to
replicate inter-node measurements across nodes or to enable
failover from one representative to another, though this is
clearly possible through traditional leader election and data
replication techniques.

Choosing appropriate representatives is an orthogonal
area of research that might leverage existing work on
network-aware clustering [16]. While we intend to pursue
this model as future work, for the purposes of this paper,
we assume some appropriate scheme for choosing representa-
tives that will reduce the number of nodes whose inter-node
characteristics must be stored by some constant factor. For
bootstrapping, each node in the system need only know the
identity of its representative. In addition to periodically
reporting as a single-node attribute the identity of its rep-
resentative, each node also reports whether it is itself a rep-
resentative. When a node starts up, if it is a representative,
it performs a distributed query on the “is a representative”
attribute. This query retrieves the identities of all repre-
sentatives in the system. The querying node subsequently
takes periodic measurements of the desired inter-node at-
tributes to all all other representatives in the system, and
stores them locally.

3.4 Optimizer
Independent of the technique used for performing the

search on single-node attributes, the result is a list of all
nodes that satisfy the union of all single-node constraints in
the user’s original query. The querying node then combines
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this information with the appropriate inter-node measure-
ments from the representatives, as described in Section 2.
The next step is to use this information to determine an
appropriate mapping of nodes to the groups specified in the
original query. Creating the groups of a specific size such
that all links have a latency less than the stated maximum
is an NP Hard problem; it is an instance of the k-clique

problem.
A naive algorithm for solving this problem is to enumer-

ate all possible combinations of disjoint groups that meet
the latency requirements. The running time of this algo-
rithm is exponential. To add further to the complexity of
this problem, we have the extra constraint that the resulting
groups must meet cross-group latency requirements. Fur-
ther, we want to find the set of groups that best satisfy the
requirements, as opposed to just any set of groups that sat-
isfy the requirements. Enumerating all possible solutions
and finding the optimal combination is potentially a very
time-consuming, computationally intensive task.

Therefore rather than check every possible combination,
we use pre-sorting and pruning techniques to find a good
group combination without searching every possible combi-
nation of groups. We first compute the “single-node costs”
for each candidate node, i.e., for each candidate node and
group, the cost that would be incurred if that node were to
be placed in that group. Once the single-node costs are com-
puted for each node in the candidate list, the group finding
process begins. Starting with the first node in the candi-
date list and the first group, we remove any other node in
the list that does not have a pairwise latency to the first
node within the acceptable range. We add the first node
to our group list, and continue this process with the second
node in the candidate list until an acceptable group is found
or the candidate list size is too small to ever satisfy the re-
quest. This is analogous to doing a depth first search in a
binary search tree. If we detect that the candidate list is
too small to continue, we prune the remainder of the search
path, and begin removing nodes from the group list while
moving back up the tree until we have returned to a point
where the list is not too small. We then continue search-
ing an alternate branch down the tree in the same manner.
This tree searching technique is a hybrid between a depth
first search and a breadth first search that detects bad paths
early by keeping track of the candidate set size. This is a
more efficient algorithm than a standard depth or breadth
first search that must reach a leaf node before trying an
alternate path starting from the root.

Pre-sorting the candidate node list based on single-node
costs establishes a cost-based order to the candidate node
list for each group. This allows the nodes that best meet
the requirements for a particular group to be evaluated first.
If the user-specified optimizer budget is low (which means
the user does not want to spend a long time waiting for
the optimizer to complete), this pre-sorting increases the
chances of finding a low-cost node assignment for that group
group early in the search. Further, for each group in the
query, we maintain an ordered list of potential membership
sets for that group, based on the potential membership set’s
total cost (determined by summing the single-node costs for
each group member). The membership set with the lowest
total cost is the best mapping of nodes for the group in
question.

The initial phase of the optimizer described above uses a

search tree to find a cost-sorted list of every possible group
that meets the requirements specified for each requested
group. The final step of the optimizer is to evaluate these
lists to check for cross-group constraints and find the opti-
mal group combination out of all possibilities. In many cases
the optimal combination is the first combination, since the
candidate group lists were already pre-sorted based on ag-
gregate cost. This search continues until all possibilities are
evaluated, or for the remainder of the user specified opti-
mizer budgeted search time.

Pseudocode for our algorithm is shown in Table 3.

3.5 Load Balancing
A potential drawback of the three distributed range search

techniques we have described is that both updates and
queries are likely to be non-uniformly distributed. Yet DHT
node identifiers are created uniformly at random, so we will
be attempting to map a nonuniform distribution of reports
and queries to a set of servers whose keyspace responsibilities
are uniformly distributed. This will lead to load imbalance.

As a simple example, if reporting nodes are concentrated
in one geographic region, they may be more heavily used
during daytime hours in that geographic region, and their
various utilization statistics will therefore tend to be high at
those times. Furthermore, most queries are likely to request
nodes with low utilization attributes. As a result, both up-
dates and queries may have a tendency to be skewed towards
a small subset of SWORD nodes.

We address the load balancing of updates through a com-
bination of passive and active techniques. We discussed in
Section 3.1 the passive techniques, namely the use of sub-
regions, fA functions that are customized to the range of
values of each attribute A, and randomized lower bits of the
key to spread discrete-valued measurements to a continuous
range.

For active load balancing, we use the technique described
by Karger and Ruhl [15], which operates approximately as
follows. Each SWORD node periodically generates a ran-
dom key and sends its load to that DHT key. If there is
sufficient load imbalance between the sender and receiver,
the less heavily loaded node moves to take over some of
the load (i.e., some of the keyspace) from the more heavily
loaded node. Note that we do not explicitly transfer any
keys when a node moves. Instead, our soft-state mechanism
combined with the DHT’s self-healing property ensures that
the stale data will be aged out and the new mapping will
be used for subsequent updates. In our implementation, a
node “moves” in the DHT keyspace by terminating itself
(the Bamboo process) and restarting the Bamboo process
using the new DHT key.

We currently use update load as our only load metric for
active load balancing; we make no attempt to balance query
load. While it is perhaps also important to account for query
load, it is more difficult to balance query load using the
Karger mechanism. Consider the case where most queries
are looking for loads between 0 and 1, and these correspond
to DHT keys (after expansion) between 1000 and 3000. Sup-
pose there is currently a node with ID 2000 that is respon-
sible for that entire range (Bamboo maps keys to the node
with the closest ID). Suppose we move a node with some key
outside this range to ID 2500. Users are still searching for
keys between 1000 and 3000 to satisfy their queries, so the
load imbalance can actually become worse—now two nodes

11



public grouplist findGroups {
foreach group {

while(!stop) {
//1: Find group of specified size
newGroup=Checklatency(node_list, 0, newVec,

size, min_latency, max_latency);
if(newGroup.size()=size)

//2a: Group was found
newGroup.computeCost();

groupList.add(newGroup);
groupList.sortByCost();

else
//2b: Reached end of search
stop=true;

}
}

if(groupList.size()!=0)
//3: Check for constraints between groups
done=CheckConstraints(groupList);
if(!done)

//4: No link found. The request cannot be satisfied
return null;

else
return grouplist;

}
}

//Recursive algorithm for checking latency
public nodeList CheckLatency(listNodes, count,

newVec, max, min_latency, max_latency) {
oldList=listNodes; //Make copy of list
source=oldList.pop(); //Get first element

//Find links with desired latency
for (i=0 to oldList.size()) {

dest=oldList.elementAt(i);
latency=latencyMap(source, dest);
if (latency < max_latency
&& latency > min_latency) {

newList.add(dest);
}

}

if(newList.size() < max-count-1) {
//Not enough nodes to continue on this path
if(oldList.size() < max-count) {
if(stack.size() > 0 && count > 0) {

newList.removeAllElements();
count--;
newVec.removeLastElement();
oldList=stack.pop();
return CheckLatency(oldList, count, newVec,

max, min_latency, max_latency);
}
else

return null;
}
else

//Continue down same path
newList.removeAllElements();
return CheckLatency(oldList, count,

newVec, max, min_latency, max_latency);
}
else {
newVec.add(source);
stack.push(source);

if(count==max)
return newVec;

else
return CheckLatency(newList, count, newVec,

max, min_latency, max_latency);
}

}

Table 3: Pseudo code for our optimizing group
finding algorithm.

are overloaded (node 2000 and node 2500) instead of just
one.

We note that the Karger and Ruhl load balancing tech-
nique is not without its drawbacks. Perhaps significant is
that the logarithmic-hops routing property of DHTs de-
pends on nodes being assigned keys drawn uniformly at ran-
dom from the DHT keyspace. The Karger approach changes
this distribution, making it denser than uniform random in
popular regions of the keyspace and sparser than uniform
random in unpopular regions. This will affect the average
path length between some hosts in the DHT, and it will in-
crease routing load in “sparse” parts of the address space.
Our results indicate that the inflation in path length is ac-
ceptable for the networks that we consider. For networks of
sufficient size where this additional overhead becomes sig-
nificant, related work [4] shows how to augment a DHT to
account for such skewed assignment of nodes to the DHT
keyspace.

3.6 PlanetLab
At the time of this writing, SWORD has been running

continuously on over 200 PlanetLab for multiple weeks.
(Constraints of the Bamboo DHT prevent us from running
Bamboo, and therefore SWORD, on nodes that are con-
nected only to Internet-2, but we are running SWORD on
all other accessible PlanetLab nodes). The architecture of
SWORD on PlanetLab is the same as that illustrated in
Figure 1. A SWORD instance runs on every PlanetLab
node. To issue a query, a user makes a TCP connection
to any SWORD instance, and sends the XML query. The
contacted SWORD instance initiates the distributed range
search, followed by the retrieval of the needed inter-node
measurements and invocation of the optimizer. That node
then returns to the user over the same TCP connection the
result (a list of nodes, the groups to which they have been
assigned by the optimizer, and the raw node measurements
that were used in making the assignment). For PlanetLab,
we extended our query language to allow users to specify a
per-group maximum number of nodes that can be assigned
to that group from any single PlanetLab site.

We designed the mechanism for updates with extensibility
in mind. In particular, we wanted to make it easy to add
new attributes and data sources, without having to restart
any nodes. Updates are handled as follows. Every two min-
utes, each node reads a configuration file that states for each
attribute its name, its type, the name of the Java class con-
taining its fA function, and the name of the data file that
will contain its current value. A separate process, run from
cron, ensures that the data file for each attribute is kept up-
to-date (at any frequency interval, which may be longer than
two minutes). It then reads the data sources themselves and
sends out a measurement report.

To make this architecture more concrete, we currently
utilize two data sources (in addition to the network coor-
dinates data source that is built into SWORD): the gan-
glia [23] daemon running on each node, and the “CoTop”
tool [20] running on each node. Every two minutes a cron
job on each node invokes a script that contacts the local
ganglia daemon running on port 8649 of that node, parses
the returned metrics relevant to that node (in some Ganglia
configurations, metrics for all nodes at that PlanetLab site
will be returned, rather than only metrics from the local
node), and makes them available to SWORD. Likewise the
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CoTop tool is invoked every two minutes on each node to
collect information about the resources being used by the
most resource-consuming process on that node. Likewise
every two minutes SWORD reads the current ganglia and
CoMon metric files, creates an update message containing all
metrics, and sends the update message to the DHT nodes
corresponding to the values of the “key” attributes in the
update.

To add a new metric, the administrator simply writes a
script that both measures the new metric of interest and
writes it to a file. Then she adds a line to the cron configu-
ration file on her machine to invoke the script at the interval
at which she wants the metric to be measured. Finally she
adds a new line to the SWORD configuration file, specifying
its name, its type, the name of the Java class containing its
fA function, and the name of the data file that will contain
its current value. At the next two-minute interval, SWORD
will re-read the configuration file and incorporate the new
metric into the update it generates; the SWORD service
does not need to be stopped and restarted for the new met-
ric to be added.

Our PlanetLab implementation does not use “represen-
tatives” or direct measurement of inter-node latencies. In-
stead, inter-node latencies are estimated using the network
coordinates of the pair of nodes between which the latency
measurement is desired.

The attributes that are currently available to be queried
from SWORD appear in Table 4.

4. EVALUATION

4.1 Overview
In our evaluation we were interested in answering the fol-

lowing questions:

1. How does performance scale with number of nodes,
when workload remains constant?

2. How do the query rate and report rate affect per-
formance? How do the different range search ap-
proaches we have implemented (leaf-set walk, routing-
table walk, and hybrid) compare to one another and
to a centralized implementation?

3. Can our DHT-based approaches heal quickly from fail-
ures, even large ones?

4. How much network bandwidth does a report and query
workload consume?

5. How much of an impact does the skew of node DHT
keys resulting from load balancing have on the length
of DHT routing paths for updates?

6. What is the end-to-end performance of queries, includ-
ing time to retrieve inter-node statistics from repre-
sentatives and to pass candidate nodes through the
optimizer?

We evaluated SWORD on two comparable clusters: one
cluster of 38 IBM xSeries PCs with Dual 1 GHz Pentium
III processors and 1.5 GB of RAM, and one cluster of 38
Dell PowerEdge 1750s with 1GB RAM and single 2.8GHz
Intel Xeon processors. Both clusters used Gigabit Ether-
net. We used ModelNet [26] to emulate wide-area band-
width and latencies, and the Inet topology generator [5] to

Table 4: Attributes currently measured and
queryable by the SWORD PlanetLab deployment.

attribute name type units

hostname string
cpu aidle double %

ip string
mtu double B

cpu nice double %
cpu speed double MHz
cpu user double %

mem shared double KB
load fifteen double

cpu idle double %
proc total double

mem cached double KB
proc run double
cpu num double
pkts in double packets/sec

part max used double %
swap total double KB
bytes out double bytes/sec
load five double
os release string

machine type string
gexec string

disk total double GB
boottime double s
mem total double KB
disk free double GB

mem buffers double KB
cpu system double %

bytes in double bytes/sec
os name string
sys clock double s
swap free double KB
load one double
pkts out double packets/sec
mem free double KB
latency double ms

gnp network coordinates n/a
cotop txhog string (slice name)

cotop prochog string (slice name)
cotop txkb double Kb/s

cotop nprocs double
cotop rxhog string (slice name)

cotop memhog string (slice name)
cotop rxkb double Kb/s

cotop mempercent double %
cotop cpupercent double %

cotop cpuhog string (slice name)
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create a 10,000-node wide-area AS-level network with a vari-
able number of client nodes (225, 450, and 900) always with
4 client nodes per stub. Transit-transit and transit-stub
links were 45 Mb/sec and client-stub links were 1.5 Mb/s.
Latencies were based on the Inet topology. We chose one
client node at random from each stub to serve as the “rep-
resentative” for itself and the other nodes in its stub. We
used the Bamboo DHT version available in December, 2003.

Our baseline workload consists of updates (measurement
reports) and queries, each issued by each of 900 virtual
nodes. Each node issues one update every five minutes, with
ten attributes per update: eight doubles (three for the net-
work coordinate space) and two strings. Each node issues
one query every five minutes. In order to stress the system,
each query uses the same range search attribute (thereby
restricting queries to one sub-region). We use eight sub-
regions (as defined earlier) overall. We used a Zipf workload,
defined as follows.

For reports, Doubles are Zipf distributed between 0 and
1000, with the heavy portion of the distribution at 0. Net-
work coordinates are reported as measured by a network co-
ordinates subsystem running in the same address space as
SWORD and taking measurements of the emulated network
topology; those three double values tend to be in the range
-100 to 100. One of two strings is chosen for each string
attribute, and the choice is made using a Zipf distribution.

For queries, each query specifies the conjunction of three
constraints, one for each of three of the double attributes,
with each of the three constraints identical within (but not
between) each query. The width of the query ranges is cho-
sen uniformly at random, centered at a value that is Zipf-
distributed, with the heavy portion of the distribution at 0.
Note that our Zipf report/query distribution is designed to
stress the system, as the aggregate update and query load
will be spread among a smaller number of servers than it
would be with a uniform update and query load distribu-
tion.

The general justification for this workload is as follows.
Uniform random query width models the “picky-ness” of
different users being uniformly randomly distributed. Zipf
distribution for the low point of the query models a user bias
toward picking the “best” machines (which we assumed was
represented by the low end of the range). We biased Zipf
for the updates toward the same end as Zipf for the queries
because i) we wanted to ensure that enough candidate nodes
were actually returned (the evaluation would be meaningless
if the user queries matched only a trivial number of nodes),
and ii) one would assume that users would not want to use a
system where their desires could rarely or never be satisfied.
Had we chosen values in updates to rarely be satisfiable, our
system would perform better than we report here. We use
a Zipf parameter of 0.9.

We examined four range search configurations. (i) The
leaf-set walk approach was described in Section 3. By de-
fault we do not limit the number of hops or number of nodes
returned. (ii) The routing-table walk approach, also de-
scribed in Section 3. We measured this approach both with
callbacks to the querying node before taking a hop to the
next server, and without callbacks (i.e., a flood of the query
subject to the algorithm described in Section 3), but for the
workloads we used, the two approaches showed similar per-
formance, so we present only the non-callback results here.
(iii) A logically centralized configuration. In this scenario
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Figure 7: Median range search latency versus num-
ber of nodes for our three non-centralized range
search techniques.

there are 8 or 64 servers to which all updates and queries are
directed. The DHT keyspace range is statically partitioned
evenly among the servers, analogous to range partitioning in
parallel databases and the way in which the keyspace is au-
tomatically partitioned in a DHT. Updates and queries are
then handled analogously to the way they are handled for
the leaf-set walk and routing-table walk approaches, except
that updates go to one of the (8 or 64) servers and queries
are sent in parallel to the servers that are responsible for
the portions of the range indicated in the query. For evalu-
ating this approach, we modified the emulated topology so
that N/4 groups of four servers each were connected via a
45 Mbps, 1 ms-latency network link to their upstream tran-
sit node, where N is the number of “central” servers (8 or
64). This was done to emulate an environment in which a
service provider has placed the N servers in N/4 geograph-
ically distributed, well-connected collocation centers. (iv)
A hybrid configuration, as described in Section 3), with
8 index servers. The index servers’ network links are con-
figured as described above for central. We found that the
performance of hybrid was essentially identical regardless of
the number of nodes serving as index servers (up to 64, the
maximum that we tried), so we report only the results from
the 8-index-server runs here.

4.2 Results

4.2.1 Range search scalability under constant work-
load

Figure 7 shows how the performance of our three non-
centralized range search techniques scales with increasing
number of nodes, given a fixed workload. The main effect
we expect to see here is improving performance as a larger
number of nodes are available to “sink” the update load,
leading to less contention for node resources (including last-
hop bandwidth) when queries are issued. This is the case
in the hybrid and routing-table walk cases. The effect is
less pronounced in the leaf-set approach because the reduc-
tion in per-node update load is largely offset by an increased
number of nodes that must be visited to satisfy the range
query (because a larger number of nodes in the DHT means
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Figure 8: Cumulative distribution function of query
latency, for workloads of 1800 queries every 5 min-
utes and 900 queries every 5 minutes, using the cen-
tralized approach with 8 and 64 servers.
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Figure 9: Cumulative distribution function of query
latency, for workloads of 1800 queries every 5 min-
utes and 900 queries every 5 minutes, using the hy-
brid approach.

each node is responsible for a smaller range of values). Al-
though more nodes must also be visited in the routing-table
walk search strategy as the number of nodes increases, the
routing-table walk approach is able to exploit a greater de-
gree of parallelism (a routing table out-degree of 16 versus
a successor set out-degree of 4 in Bamboo) and so is less
affected by the larger number of nodes that must be visited.

4.2.2 Impact of range search workload on perfor-
mance

Figures 8, 9, 10, and 11 analyze the performance impact
of doubling the query rate for each of the range search ap-
proaches, while keeping the reporting rate constant at 1 re-
port every 5 minutes from each of the 900 virtual nodes in
the overlay topology.

Figure 8 shows that the performance of the centralized
approach decreases significantly when the query rate is dou-
bled, due to an overloading of the links into the eight server
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Figure 10: Cumulative distribution function of
query latency, for workloads of 1800 queries every 5
minutes and 900 queries every 5 minutes, using the
leaf-set walk approach.
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Figure 11: Cumulative distribution function of
query latency, for workloads of 1800 queries every 5
minutes and 900 queries every 5 minutes, using the
routing-table walk approach.

nodes and increased CPU load on the eight servers. Note
that because we are measuring a combined network and
CPU effect, the performance degradation can be mitigated
by increasing the number of well-connected servers from 8 to
64. The figure also shows that for the light query workload,
a configuration with 8 servers actually slightly outperforms
a configuration with 64 servers, due to the need to query
and receive responses from a larger number of servers in the
latter case.

Figure 9 shows that the performance of the hybrid ap-
proach deceases when the query rate is doubled, but it
does not diminish as significantly as does the centralized ap-
proach. This is because index servers in the hybrid approach
receive queries and rebroadcast queries, whereas servers in
the centralized approach receive queries and return results.
Because queries are significantly smaller than results, dou-
bling the number of queries increases the traffic load on the
index servers less than it increases the traffic load on the
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Figure 12: Cumulative distribution function of
query latency for the four approaches under the de-
fault workload.
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Figure 13: Cumulative distribution function of
query latency for the four approaches under the 10x
report workload.

central servers. (This is also why increasing the number
of servers for the hybrid approach did not improve perfor-
mance, while it did improve performance for the centralized
approach.) The exact difference depends on the number of
DHT nodes that the index server rebroadcasts the query to
compared to the number of candidate nodes in the result
set, and is therefore partly a function of the workload we
have selected.

Figures 10 and 11 show that the performance of the leaf-
set walk and routing-table walk approaches decreases very
slightly with a doubling of the query rate. We were unable
to run with larger query rates because of limitations of our
test cluster. We do expect that as the query rate scales, the
performance of DHT-based approaches will also eventually
suffer.

Figures 12 and 13 analyze the performance impact of scal-
ing up the report workload by 10x for each of the approaches,
while keeping the query rate the same (one query every 5
minutes from each of 900 virtual nodes participating in the
system). We do this by modeling what would happen if each

SWORD node were acting as a proxy for ten non-SWORD
nodes reporting statistics about themselves. Thus instead of
each SWORD node sending a report about itself once every
5 minutes, as in the default workload, each SWORD node
sends a report about ten different nodes every 5 minutes.
This serves to increase both the number of reports sent per
unit time and the size of query responses (because now up to
9000 nodes could match each query rather than 900 nodes).

We see the same trend in performance degradation when
scaling up the report workload by 10x as we did when scaling
up the query workload by 2x, except that the performance
degradation for all four approaches is more pronounced when
scaling up the report workload by 10x than when scaling
up the query workload by 2x. This is because doubling
the query rate essentially doubles the amount of network
bandwidth used per unit time for every approach, while in-
creasing the report workload by 10x increases by 10x the
bandwidth used for reports and increases by approximately
10x the bandwidth used for query replies since there are 10x
more nodes about which reports are issued.

We also observe that when scaling either the report work-
load or query workload, the performance of the leaf-set walk
approach degrades more, in absolute terms, than does the
performance of the routing-table walk approach. This is be-
cause the routing-table walk approach exploits more paral-
lelism than does the leaf-set walk approach, so the increased
latency along IP links is overlapped more in the routing-
table walk than in the leaf-set walk. Also, the routing-
table walk follows routing-table pointers, which are latency-
optimized in Bamboo, while the leaf-set walk follows leaf set
pointers, which are chosen purely by ordering nodes by their
DHT ID, and therefore have expected latencies that are the
average between any two overlay nodes in the DHT.

One conclusion from these results is that for a sufficiently
large workload relative to the number of servers, a central-
ized implementation can perform poorly relative to a dis-
tributed one, depending on the amount of resources allo-
cated to the centralized approach. Additionally, it may be
easier for n organizations to each donate a single machine
on behalf of a service rather than requiring a central ser-
vice provider to provision many servers and the requisite
network connections. We do not claim to have explored the
full space of workloads and server configurations, so we are
unable to make a general claim about the number of servers
and quality of network connections to those servers neces-
sary to outperform a distributed implementation. However,
we do note that the DHT-based approached and a “hybrid”
approach that distributes the data storage but centralizes
the mapping of attribute ranges to data storage nodes, offer
promising performance for at least some workloads.

4.2.3 Robustness to perturbations
It is often claimed that decentralized distributed hash ta-

bles are an important technology because the services built
on top of them automatically inherit the DHT’s perfor-
mance scalability, self-configuration, and robustness. We
have shown that SWORD inherits the first two properties
in earlier sections; here we address the third. In contrast to
centralized services that often retrofit reliability onto single-
point-of-failure architectures (e.g., adding a failure-detecting
front-end load balancer to a web service cluster), SWORD
takes advantage of the Bamboo DHT’s self-healing prop-
erty that automatically remaps keys to nodes when a node
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Figure 14: Number of candidate nodes returned by
range query as a function of time, before and after
killing 20% of the reporting nodes in a 900-node
system at 5000 seconds into the run.

joins or leaves the system. As soon as the DHT has per-
formed the necessary remapping, reporting nodes automat-
ically send their reports to the node newly-responsible for
the key corresponding to the report, and queries are auto-
matically routed to the new nodes that will hold the relevant
reports.

Each SWORD node periodically routes a measurement re-
port to the DHT keys corresponding to the “key attributes”
of the measurement report. If a DHT server node fails,
information about the reporting node will therefore be un-
available until the next update, at which time the report
will go to the DHT node that has taken over responsibility
for that key. In other words, once the DHT stabilizes and a
full reporting interval has passed, information about all live
reporting nodes should be available to queries. To verify
this robustness mechanism, we ran an experiment with the
leaf-set walk DHT strategy, killing 20% of the DHT nodes
approximately 5000 seconds into the run. The workload con-
sisted of updates whose values were uniformly distributed
between 0 and 1000, and queries for the range [0, 150] for one
attribute. We computed over every ten-minute time interval
the average of the number of nodes returned by the query,
over all queries that were answered during that time inter-
val. We expect this to be approximately 900 ∗ 0.15 = 135 at
the beginning of the run, since approximately 15% of the 900
nodes will be reporting values in the range [0,150], and ap-
proximately 0.8∗135 = 108 after 80% of the nodes are killed.
(Keep in mind that all nodes in the system are “servers” in
the DHT storing measurement reports as well as load gener-
ators, so killing 20% of the nodes kills 20% of the reporting
nodes as well as 20% of the servers.) Figure 14 shows this to
be the case, by plotting the percentage of the maximum re-
sult set returned during each 10 minute interval. Once 20%
of the nodes are killed at time 5000 seconds, SWORD and
Bamboo “heal” and queries begin receiving the new result
set (containing 80% of the original result set) within about
30 minutes. Between t = 5000s and t = 6800s, queries are
receiving information about some dead nodes because, for
this run, we set the soft state timeout to 30 minutes (mean-
ing that information about dead nodes is retained up to 30

minutes after they die). The minor fluctuations in the graph
around t = 3600s and t = 10800s are due to occasional mes-
sage loss due to network congestion.

4.2.4 Bandwidth Consumption
While range search latency and robustness are important,

we are also interested in the relative network resource con-
sumption of the four schemes. For the 10x report workload
configuration (with 900 nodes each issuing measurement re-
ports for 10 nodes every 5 minutes, and each of the 900
issuing one query every 5 minutes), we found the follow-
ing average bandwidth consumption over the entire network
for the four schemes, above the background bandwidth con-
sumption of our network coordinates subsystem and Bam-
boo’s leaf set and routing table membership maintenance
processes. These numbers include bandwidth for sending
measurement reports, performing range queries, and con-
tacting the necessary “representative” for inter-node mea-
surements.

The hybrid approach uses the most bandwidth because
each DHT node must periodically beacon the lower and up-
per bounds of the DHT keyspace for which it is responsible,
in addition to handling queries and reports. The routing-
table walk and leaf approaches use comparable amounts of
bandwidth; the difference is likely due to network congestion
due to flooding in the routing-table approach leading to re-
transmissions. In theory the centralized approach should
use the least bandwidth of all, since queries are rarely sent
to servers that do not have possibly matching results. The
unexpectedly large bandwidth consumption is due to a large
number of UdpCC retransmissions due to high congestion on
the servers’ network links.

Although these bandwidth numbers are large, keep in
mind that each of the 900 nodes in the system is send-
ing reports about 10 nodes every 5 minutes, and issuing
a query every 5 minutes. On PlanetLab, with slightly over
200 nodes and updates every few minutes containing over 40
attributes, we found network bandwidth consumption only
about 5 Kbps above the baseline Bamboo bandwidth con-
sumption (in the absence of queries), and this number could
be further reduced with compression.

4.2.5 Load balancing
The Karger and Ruhl [15] load balancing mechanism we

employ has the potential to disrupt the logarithmic-hops
routing property of Bamboo because it shifts the distribu-
tion of nodes within the DHT ID space from uniform to
more heavily concentrated in regions of high load. We were
therefore interested in determining how significantly the load
balancing process increases the average number of hops that
messages take through the DHT. To evaluate this, we mea-
sured the average number of overlay hops taken by report
messages on their way to the DHT node responsible for the
report, every hour during a four-hour experiment with a
Zipf workload where load balancing was enabled. We found
that the average number of hops increased from 4.4 during
the first hour to 6.2 during the fourth hour. This suggests
that the node identifier skew does lead to a nontrivial vi-
olation of the desired logarithmic-hop routing property of
the DHT, and that additional mechanisms may be needed
to mitigate the effect if the routing inefficiency is consid-
ered unacceptable. Possible solutions to this problem are
described in [4]. We are currently investigating ways to aug-
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Range Search Technique Average bandwidth

Hybrid 2.72 Mb/s
Centralized 2.45 Mb/s

Routing-table Walk 1.56 Mb/s
Leaf-Set Walk 1.43 Mb/s

Figure 15: Bandwidth per node, emulating 9000 reporting nodes/5 min and 900 queries/5 min.
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Figure 16: Cumulative distribution function of op-
timizer latency.

ment Bamboo with extra pointers to “route around” dense
areas of the identifier space, as well as determining whether
the potentially significant skew we have identified is signif-
icant in real-world workloads. For example, if update mea-
surements (and hence loads) vary in a diurnal pattern, the
paths with extra hops due to load balancing would change
over the course of the day, serving to spread over time the
impact of the routing length changes.

4.2.6 End-to-end performance
Range search performance is not the only contributor to

end-to-end resource discovery query performance. We are
also interested in the time to retrieve the inter-node statis-
tics from “representatives” in parallel and for the optimizer
to attempt to find the best mapping of nodes returned from
the distributed query, to groups in the XML query specifi-
cation.

For all runs in the 900 node configuration, the time needed
to retrieve the inter-node statistics from “representatives”
via TCP was approximately three seconds. Since there was
one representative per stub, the maximum number of repre-
sentatives that might need to be contacted was equal to the
number stubs, which was 225. However, queries returned
nodes with on the order of tens of candidate nodes, so the
number of representatives that needed to be contacted was
generally on the order of 10.

Figure 16 shows cumulative distribution function of com-
pletion times for 1000 queries passed to the optimizer. In
order to create a large representative workload to evaluate
the optimizer, resource updates were created using archived
Ganglia [23] data gathered over three months on PlanetLab.
Queries were chosen uniformly at random.

Putting together all the pieces, median end-to-end query

latency (collecting single-node measurements via range
query + collecting inter-node measurement by contacting
representatives + running the optimizer) for a 900-node syn-
thetic workload is less than ten seconds.

4.2.7 PlanetLab evaluation
In addition to evaluating SWORD in an emulated environ-

ment, we have evaluated SWORD’s real-world performance
on PlanetLab. Compared to our ModelNet configuration,
PlanetLab has a smaller number of nodes, a higher per-node
CPU load, and a wide range of inter-node bandwidths that
depends on the nodes’ location.

We ran our experiments on PlanetLab on July 16, 2004.
We ran our experiments on two sets of nodes, one a subset
of the other. The first set was all 214 usable nodes that
were connected to the commodity Internet (i.e. all usable
nodes that were not connected only to Internet-2)1. The
second set of nodes was the subset of the first set that is
used by CoDeeN. These 108 nodes are all at universities
in North America and tend to have high-bandwidth, low-
latency network paths to one another.

Each node reported 44 metrics, of which 31 were declared
as “keys” (usable as the range search attribute in a query)
and 13 were declared as “non-keys.” We ran the experiments
with updates at a 2 minute interval and at a 4 minute in-
terval but found no significant difference in the performance
results, so we report only the 2-minute interval results here.
We measured query latency when a single query was in the
system at a time; the measured times thus represent the
“best case” latency. Queries were introduced into the sys-
tem and returned to the user using a command-line client
as depicted in Figure 1.

For our experiments we issued a series of queries of the
form

<request>

<query_attr>load_one</query_attr>

<group>

<name>Group1</name>

<numhosts>10</numhosts>

<num_machines>4</num_machines>

<load_one>0.0,0.0,N,N,0.0</load_one>

<latency>0.0,0.0,150.0,150.0,0.0</latency>

</group>

<group>

<name>Group2</name>

<numhosts>10</numhosts>

<num_machines>4</num_machines>

<load_one>0.0,0.0,N,N,0.0</load_one>

1Bamboo needs symmetric reachability among nodes, but a
host that is connected only to Internet-2 cannot route via
IP to a host that is not connected to Internet-2, and vice-
versa; thus Bamboo cannot usefully run on nodes that are
only connected to Internet-2, and by implication SWORD
cannot run on nodes that are only connected to Internet-2.
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Figure 18: Range query latency versus width of
range searched, on PlanetLab.
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Figure 19: Optimizer latency versus width of range
searched, on PlanetLab.

<latency>0.0,0.0,150.0,150.0,0.0</latency>

</group>

</request>

N was varied between each run, covering all integers be-
tween 1 and 15 inclusive. The fA function for load one was
configured to map the range 0 to 15 to the full sub-region
corresponding to the load one attribute (32 sub-regions were
used, hence approximately 1/32 of the nodes were mapped
to the range for each attribute), with loads greater than 15
mapped to the same DHT key as loads equal to 15. With
this configuration we thus expect approximately (M/32)/15
additional DHT nodes to be searched for each 1.0 increment
in load one, where M is the total number of nodes in the
system.

Figures 18 and 19 shows the median latency for the dis-
tributed range query and the median latency to run the opti-
mizer, as a function of the upper bound of the load requested
(and hence the number of candidate nodes returned). For
reference, the number of candidate nodes returned and the
number of DHT nodes visited by each range query is listed
in Figure 17. Note that in Figure 17 the number of DHT
nodes visited increases unevenly as the “max load” increases

by each 1.0 unit due to the relatively small number of nodes
leading to a not-perfectly-uniform random distribution of
node IDs in the DHT keyspace.

Figure 18 shows that SWORD’s range search performs
reasonably well on PlanetLab, returning results to the op-
timizer within a few seconds even when all nodes are re-
turned by the range query. The graph shows that most
performance effects are in the “noise” except for the num-
ber of candidate nodes returned: the load 1.0 response time
for the “all-nodes” configuration is about the same as the
load 15.0 response time for the CoDeeN configuration, even
though in the latter configuration three times as many DHT
nodes are visited, because in both cases 108 candidate nodes
are returned. As further evidence, increasing the number of
DHT nodes visited does not increase range query latency for
either configuration as the number of candidate nodes re-
turned remains approximately equal (e.g. in the load 6.0 to
15.0 regimes). This suggests that if real-world user queries
commonly return hundreds of candidate nodes, we can im-
prove SWORD’s performance by reducing the amount of
data transferred from DHT server nodes to the querying
node by encouraging users to explicitly limit the number of
candidate nodes returned in their query as described ear-
lier, and/or by using compression of data about returned
candidate nodes.

SWORD’s optimizer latency (Figure 19) shows a similar
effect of latency increasing as the number of candidate nodes
increases. Here the increasing latency is not due to the larger
amount of data transferred, but because of the larger input
data set to the optimizer algorithm. This graph shows that
optimizer latency can be significant if a large number of can-
didate nodes is returned, and that we should attempt to re-
duce the running time of the optimizer in future work. Note
that some performance degradation effects are magnified in
this graph because of high load on all PlanetLab nodes, and
therefore on the PlanetLab node issuing the query and run-
ning the optimizer.

5. RELATED WORK
The existing work most closely related to SWORD falls

into three categories: systems for distributed range search,
systems for internet-scale query processing (that do not sup-
port distributed range search), and systems for wide-area
node resource discovery.

The three related systems for distributed range search are
Karger and Ruhl, Mercury, and PHT. The general idea of
mapping values of stored items to the DHT node respon-
sible for the key with that value, in order to enable range
search, is alluded to briefly by Karger and Ruhl [15]. In
contrast to our work, they did not evaluate this idea (either
in implementation or simulation), and they did not suggest
the mechanisms we use for “passive” load balancing or any
technique for mapping to the DHT keyspace the values of
attributes whose values do not naturally fall into the DHT
keyspace.

Perhaps most closely related to our work is a concurrent
effort to support distributed range queries in Mercury [4].
Essentially, Mercury adopts a strategy similar to our “leaf
set walk” approach. Mercury uses a “small-worlds” DHT
structure that mitigates the path length changes due to
Karger and Ruhl-style load balancing, whereas SWORD
runs unmodified on an existing DHT (Bamboo). Their mo-
tivating application is object management for a multiplayer
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all-nodes CoDeeN-nodes
Max load # candidate all-nodes # candidate CoDeeN-nodes

nodes returned # DHT nodes visited nodes returned # DHT nodes visited

1.0 108 2 34 1
2.0 167 2 80 1
3.0 195 3 99 1
4.0 203 3 99 1
5.0 204 3 99 1
6.0 205 3 105 1
7.0 206 3 106 2
8.0 208 4 107 3
9.0 209 4 107 3
10.0 213 6 107 3
11.0 213 7 107 4
12.0 213 7 107 6
13.0 213 8 107 6
14.0 214 9 108 6
15.0 214 9 108 6

Figure 17: Number of candidate nodes returned and number of DHT nodes visited, as a function of load, for
the “all non-I2-only nodes” and “all CoDeeN nodes” configurations reported in Figures 18 and 19.

game, whereas we target wide-area resource discovery. As
a result, we have a separate mechanism for retrieving large
objects (“representatives”), we handle network coordinates
and inter-node constraints, and we support a query language
with user-specified utility functions. Finally, we evaluate
three peer-to-peer DHT based techniques and compare them
to a centralized implementation.

Another recent mechanism proposed for distributed range
search is the Prefix Hash Tree (PHT). PHT incrementally
grows a trie, each of whose leaves corresponds to a range of
item identifiers that map to the DHT node responsible for
the DHT key defined by the path from the root of the trie
to that leaf. The trie starts with a singleton node (the root)
and grows by incrementally splitting nodes when they be-
come overloaded. Leaf nodes are merged into their parent
(which becomes a leaf) when the children become under-
loaded. Although we considered using PHT for range search,
we decided against it for several reasons. First, PHT defines
overload and underload as absolute conditions rather than
relative to other nodes; thus is can prevent overload and
underload but would be expected to be less effective at bal-

ancing load because no comparison is made of load among
nodes. Second, the base PHT design requires maintaining a
small amount of extra metadata beyond what is required by
the DHT (in particular, each node needs to know whether
it is an interior node or a leaf), and the important perfor-
mance optimizations suggested for PHT require additional
metadata beyond that. The Karger and Ruhl approach
(and therefore ours) requires no extra metadata beyond that
which the DHT is already maintaining for the purposes of
key-based routing. Note also that because PHT maintains
one trie per attribute, the amount of metadata maintained
will be multiplied by a nontrivial constant factor in a system
such as ours where many attributes are tracked. The amount
of PHT metadata is not as much of a concern because of the
associated storage requirements, which is small, as because
it must be kept up-to-date in the face of nodes joining and
departing the network, voluntarily or due to failures and re-
covery. A pure DHT-based approach such as ours leverages

the dynamic metadata maintenance provided by the DHT.
Three systems for internet-scale query processing are

PIER [13], Sophia [28], and IrisNet [17]. Although all three
could be used for resource discovery, they do not support dis-
tributed range search, so range search queries are expected
to perform more poorly than in SWORD. In particular, a
range query would be flooded to all nodes and the range
filter applied on the node that issued the query. Also, they
do not offer special support for resource discovery queries,
such as SWORD’s XML-based query language, its support
for constraints on inter-node attributes, or its utility-based
optimization framework. A related system, Ganglia [23],
collects metrics from cluster nodes, and has recently added
functionality to hierarchically aggregate this data for presen-
tation at a centralized node, but it is not fully distributed
in SWORD’s peer-to-peer fashion, and it lacks a query lan-
guage. As mentioned in Section 3.6, we use Ganglia’s per-
node daemon as one of our data sources for our SWORD
service on PlanetLab.

Researchers have proposed a number of systems or ap-
proaches for node resource discovery in wide-area systems.
Considine, Byers, and Mayer-Patel [6] argue that next gen-
eration wide-area testbeds should possess the same speci-
fiable and repeatable behavior that is present in emulation
and simulation environments. They go on to describe a con-
straint satisfaction method for finding a topology of nodes
that meets a set of pairwise constraints, and they note that
this problem is NP Complete. The authors are essentially
solving the same group creation problem based on inter-node
characteristics that we are, but they do not handle single-
node measurements, and their tool does not offer a query
language or service interface.

SWORD bears some resemblance to XenoSearch [24];
like XenoSearch, we partition attribute value ranges among
nodes in a DHT. However, we allow value ranges to be parti-
tioned unequally among nodes to compensate for uneven dis-
tributions of the source data. We also allow partitioning on
arbitrary attributes and “server”-side filtering of the other
attributes, as opposed to XenoSearch which partitions all
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attributes and finds nodes matching desired characteristics
by intersecting the sets of nodes that match each attribute
constraint individually. Thus, they trade higher query over-
head for potentially lower update overhead since each DHT
update message only contains a single value rather than
all values as in SWORD. XenoSearch also uses a separate
DHT overlay per attribute, with the attendant overhead.
Finally, SWORD queries can specify constraints on inter-
node characteristics, while XenoSearch allows searches only
over single-node characteristics, and XenoSearch returns all
nodes matching the user-specified constraints rather than
returning a utility-optimized number of nodes the user has
requested.

Grid technologies [8, 29] address the issue of resource dis-
covery as part of the Globus Grid toolkit. The Grid views
resources contributed by companies and universities as vir-
tual organizations (VO). MDS-3 supports resource discov-
ery in Globus. The MDS-3 architecture consists of two
entities: information providers and aggregate directories.
Information providers contain detailed information about
Grid entities. When combined, information provider ser-
vices form a VO-neutral infrastructure that provides access
to information about Grid entities. Aggregate directories
provide specialized, VO-specific views of federated resources.
They store information from information providers, and re-
spond to queries using the stored information. MDS-3 uses
two base protocols, GRIP and GRRP. The Grid Informa-
tion Protocol (GRIP) accesses information from informa-
tion providers in the Grid. The Grid Registration Protocol
(GRRP) notifies aggregate directory services that informa-
tion is available. MDS-3 also includes a configurable infor-
mation provider framework called a Grid Resource Informa-
tion Service (GRIS), which can be customized by plugging
in specific information sources. Current information source
implementations include static and dynamic host informa-
tion, as well as network information. GRIS parses GRIP
requests and dispatches them to the appropriate informa-
tion provider, which returns the results back to the client.
We are not aware of any detailed evaluation of this archi-
tecture, such as its performance, scalability, or availability.
However, we believe that our architecture and techniques in
SWORD are orthogonal to these important efforts and could
be integrated into the MDS-3 infrastructure. One advantage
SWORD does provide over Globus and MDS-3 is a query
language that allows for queries over inter-node attributes.
Queries of the type described in this paper are difficult to
express in the standard query language of MDS-3.

In [1], the authors present the design and implementation
of INS, an Intentional Naming System. Using the scheme
they propose, applications that use INS specify what they
are looking for in the network, rather than specifying a spe-
cific location or hostname that describes where to find the
needed resource. INS includes a simple language based on
attributes and values. To satisfy requests, INS request re-
solvers form an application level overlay network that dis-
covers and monitors new services and resources. This sys-
tem provides a way to locate services and resources based
on resolver-initiated advertisements. While this initial work
was largely restricted to local area networks and faced some
scalability limitations, more recent work on Twine [2] ex-
tends the Twine architecture to wide-area settings, by par-
titioning resource description among nodes participating a
Chord-based overlay network. Relative to our work on

SWORD, Twine targets a different set of applications and,
for instance, does not focus on either range searches or or
inter-node characteristics.

Huang and Steenkiste [12] describe a mechanism for
network-sensitive service selection. Their system addresses a
problem similar to the one we describe here, but using cen-
tralized data collection and resource mapping. They also
focus on finding single groups that meet target criteria for
a desired application, rather than multiple groups with spe-
cific inter-node and inter-group characteristics.

6. CONCLUSIONS
A key infrastructural requirement for emerging federated

large-scale computation and communication environments
is a resource discovery system that allows users to locate
subsets of global resources to host their applications. The
service must be flexible enough to support the requirements
of a broad range of applications, highly available as it serves
as the entry point for service deployment, and scalable both
to very large systems and to a large number of rapidly chang-
ing monitored characteristics.

To this end, this paper explores a variety of architectural
alternatives for such a service, ranging from centralized to
fully distributed, through a detailed performance evalua-
tion under realistic wide-area network conditions and for
a variety of workloads. In determining the appropriate sys-
tem structure and abstractions, we make the following novel
contributions. First, we provide support for efficient dis-
tributed range queries over the conjunction of per-node re-
source requirements. Second, we efficiently support queries
over inter-node characteristics such as latency and band-
width in addition to the more traditional set of single-node
metrics. Third, we allow users to issue queries containing
simple “utility functions” and we develop an optimizer that
approximately maximizes the utility of the nodes returned
from the query. Finally, we use passive and active load bal-
ancing schemes for partitioning node attributes across dis-
tributed system participants and for dynamically adapting
to skewed resource popularity. From evaluating SWORD in
both an emulated environment and a real-world deployment
on PlanetLab, we conclude that the combination of tech-
niques SWORD uses provide sufficient performance and ro-
bustness to serve as a prototype “production” resource dis-
covery service. In so doing, we also provide evidence for
the claims many have made that decentralized distributed
hash tables are a useful building block for developing scal-
able, highly available, self-configuring wide-area distributed
services.
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