
18

Design and Implementation Trade-Offs
for Wide-Area Resource Discovery

JEANNIE ALBRECHT

Williams College

DAVID OPPENHEIMER

Google Inc.

AMIN VAHDAT

University of California, San Diego

and

DAVID A. PATTERSON

University of California, Berkeley

We describe the design and implementation of SWORD, a scalable resource discovery service for
wide-area distributed systems. In contrast to previous systems, SWORD allows users to describe
desired resources as a topology of interconnected groups with required intragroup, intergroup, and
per-node characteristics, along with the utility that the application derives from specified ranges
of metric values. This design gives users the flexibility to find geographically distributed resources
for applications that are sensitive to both node and network characteristics, and allows the system
to rank acceptable configurations based on their quality for that application.

Rather than evaluating a single implementation of SWORD, we explore a variety of architec-
tural designs that deliver the required functionality in a scalable and highly available manner.
We discuss the trade-offs of using a centralized architecture as compared to a fully decentralized
design to perform wide-area resource discovery. To summarize our results, we found that a cen-
tralized architecture based on 4-node server cluster sites at network-peering facilities outperforms
a decentralized DHT-based resource discovery infrastructure with respect to query latency for all
but the smallest number of sites. However, although a centralized architecture shows significant
promise in stable environments, we find that our decentralized implementation has acceptable per-
formance and also benefits from the DHT’s self-healing properties in more volatile environments.
We evaluate the advantages and disadvantages of centralized and distributed resource discovery
architectures on 1000 hosts in emulation and on approximately 200 PlanetLab nodes spread across
the Internet.

Authors’ addresses: J. Albrecht (corresponding author), Computer Science Department, Williams
College, Williamstown, MA 01267; email: jeannie@cs.williams.edu; D. Oppenheimer, Google In-
corporated, 1600 Amphitheatre Parkway, Mountain View, CA 94043; A. Vahdat, University of
California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093; D. A. Patterson, University of
California, Berkeley, Berkeley, CA 94720-1776.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1533-5399/2008/09-ART18 $5.00 DOI 10.1145/1391949.1391952 http://doi.acm.org/
10.1145/1391949.1391952

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:2 • J. Albrecht et al.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms: Design, Experimentation, Performance, Reliability

Additional Key Words and Phrases: Resource discovery, PlanetLab

ACM Reference Format:
Albrecht, J., Oppenheimer, D., Vahdat, A., and Patterson, D. A. 2008. Design and implementation
trade-offs for wide-area resource discovery. ACM Trans. Internet Technol. 8, 4, Article 18 (Septem-
ber 2008), 44 pages. DOI = 10.1145/1391949.1391952 http://doi.acm.org/10.1145/1391949.1391952

1. INTRODUCTION

Large-scale distributed services such as content distribution networks, peer-
to-peer storage, distributed games, and scientific applications have recently
received substantial interest from both researchers and industry. At the same
time, shared distributed platforms such as PlanetLab [Bavier et al. 2004] and
the Grid [Foster et al. 2001] have become popular environments for evaluating
and deploying such services. These platforms are typically comprised of large
numbers of heterogeneous machines connected to the Internet behind links
of varying bandwidth and latency. One difficulty in the practical use of these
large-scale infrastructures centers around locating an appropriate subset of
system resources to host a service, computation, or experiment. The process of
locating a set of machines to run a distributed application is often called resource
discovery. This article explores the design decisions that must be made when
building a highly available and user-friendly service that performs resource
discovery for users who wish to run applications in wide-area, heterogeneous
environments, specifically focusing on PlanetLab.

The principal challenges to performing resource discovery in federated Inter-
net systems include the heterogeneity of the underlying resources, dynamically
changing per-node characteristics such as CPU load and free memory, and ap-
plication sensitivity to internode characteristics such as bandwidth and latency.
Each distributed application also has a different set of resource requirements,
which means that the best set of resources will vary for each application. For ex-
ample, compute-intensive applications, such as parallel scientific applications,
might be particularly concerned about available CPU, physical memory, and
disk capacity on machines (or nodes) hosting the application. Network-intensive
applications, such as content distribution networks and security monitoring
applications, might be particularly concerned about placing service instances
at particular network locations, near potential users or at well-distributed
locations in a topology, and on machines with low-latency, high-bandwidth
links among themselves. Other applications, such as multiplayer games,
might be concerned about per-node CPU resources and internode latency and
bandwidth. Additional characteristics may be of interest to all applications:
Deploying on nodes with high historical availability may reduce performance
degradations due to failures, while deploying on nodes with low resource vari-
ability over time may improve service predictability. Thus, a resource discovery

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:3

infrastructure designed to support a variety of distributed applications must
accurately track per-node and internode characteristics and provide support
for a range of semantics with respect to specifying resource requirements.

In addition to supporting a variety of application resource requirements,
there are a number of other factors to consider when designing a resource
discovery service for use in distributed environments. To help guide our de-
sign decisions and before discussing the architecture of a specific resource dis-
covery service, we extract the following key system requirements and goals.
First, to be useful for finding resources in large-scale infrastructure-based plat-
forms [Bavier et al. 2004; Foster et al. 2001] and end-user-based platforms [Red
Herring Magazine 2004], the system must scale to thousands of nodes and sites.
Second, it must be highly available, as it is the entry point into the system for
service deployers wishing to find nodes to host their application. Third, since
certain node characteristics vary rapidly, the system must support high rates
of measurement updates from participating machines. Fourth, the system must
track both static characteristics such as operating system, processor speed, and
network coordinates [Dabek et al. 2004; Ng and Zhang 2004; Ng and Zhang
2002], as well as more dynamic characteristics such as available CPU, memory,
and disk resources. Fifth, the system must support queries over not just per-
node characteristics such as load and network location, but also over internode
characteristics such as latency and bandwidth. Lastly, due to the fact that dif-
ferent applications have widely varying needs and place varying priorities on
these needs, the system must offer an expressive query language that allows
specifying ranges of required resource quantities, as well as information about
how much utility is lost from the selection of imperfect but acceptable nodes.
Thus, the resource discovery service we envision combines aspects of distributed
measurement, distributed query processing, and user utility specification and
optimization.

A number of recent efforts have explored large-scale resource discovery
[Balazinska et al. 2002; Huang and Steenkiste 2003; Czajkowski et al. 2001;
Spence and Harris 2003; Wawrzoniak et al. 2003; van Renesse et al. 2003].
However, to our knowledge no existing system meets all of the aforementioned
requirements. In particular, we believe that resource discovery systems must
support specifying required internode characteristics and the relative utility of
both per-node and internode characteristics. Further, the system must consider
the overall utility of a group of resources when making decisions and assessing
the trade-offs among competing potential configurations. One contribution of
this work is to present the query semantics of SWORD, a resource discovery in-
frastructure that allows users to easily describe desired resources as a topology
of interconnected groups with required intragroup and intergroup character-
istics and penalty functions to indicate the utility of these characteristics to
the application. While we cannot prove generality and indeed there are certain
semantics that we cannot capture, we provide examples of a set of disparate
applications that we map to SWORD’s semantics.

A resource discovery system meeting our requirements has the potential to
generate significant load, both in terms of monitoring the target infrastructure

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:4 • J. Albrecht et al.

and in terms of running the NP-hard group-finding algorithm required to an-
swer queries for resources described as interconnected groups. Gathering, stor-
ing, and querying the monitoring data requires sufficient storage, network, and
CPU resources to support the measurement update and query rate of the sys-
tem. The group-finding algorithm, which is analogous to the classic k-clique
complexity problem, requires substantial CPU resources for each query. The
generated load of a resource discovery infrastructure increases dramatically
as the number of users submitting queries and available resources increase,
in turn impacting system scalability and performance. Thus, the second con-
tribution of this work is an exploration of a variety of architectures to support
SWORD’s design.

In this article, we consider building SWORD using three different architec-
tures, and quantify the advantages and disadvantages of each design. Our first
approach is fully distributed, and is based on the intuition that some type of
decentralized architecture is required for scalability, load balancing, and fault
tolerance (similar to a variety of earlier, related efforts [Balazinska et al. 2002;
Huang and Steenkiste 2003; Spence and Harris 2003; van Renesse et al. 2003]).
One of the key disadvantages to any distributed architecture when compared to
its centralized counterpart is the complexity required to maintain consistency
among distributed participants, which often impacts performance. To quantify
the overhead caused by this added complexity in a resource discovery system,
our second architecture is fully centralized. We show that while the distributed
architecture offers some advantages with respect to scalability and fault toler-
ance, under certain operating conditions a centralized approach outperforms
its distributed counterpart. Additionally, we find that a third “hybrid” design,
which combines aspects of both centralized and distributed solutions, has the
potential to outperform both techniques.

The remainder of this work is organized as follows. Section 2 presents a high-
level overview of the SWORD architecture and Section 3 describes the details
of our implementation. We describe our evaluation infrastructure and perfor-
mance results in Section 4, and in Section 5 we describe qualitative lessons
learned from operating SWORD as a PlanetLab service for the past two years.
We present related work in Section 6 and conclude in Section 7.

2. SYSTEM ARCHITECTURE AND QUERY REPRESENTATION

This section explains our assumptions and terminology, describes SWORD’s
high-level architecture, and describes the query model that drives our
design.

2.1 Architectural Overview

SWORD’s architecture consists of three parts, illustrated schematically in
Figure 1. The first component, labeled (i) in the figure, is a query syntax for
specifying desired node characteristics. The SWORD query syntax is described
in detail in Section 2.4. The second component, labeled (ii), is a distributed
query processor for finding candidate nodes whose characteristics match the

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:5

Fig. 1. High-level architecture of SWORD.

specified requirements. Logically, this is analogous to a database and a query
engine. In the case of SWORD, having a single centralized database does not
scale well to high numbers of users and resources.1 In Section 3.1, we explore
other approaches that leverage the scalability provided by distributed hash
tables. The third and final component of SWORD, labeled (iii), is the opti-
mizer that finds a utility-maximizing mapping of a subset of the candidate
nodes returned by the query processor to the groups in the user’s queries,
accounting for desired per-node, intragroup (or internode), and intergroup
characteristics. The optimizer outputs this mapping, along with the measure-
ments that led to these nodes’ selection. Section 3.2 presents the design of the
optimizer.

SWORD can return many such mappings if desired, ranked from lowest to
highest penalty, but for clarity we describe SWORD as if it outputs only the
lowest-penalty configuration. Note that while we often refer to the “client” or
“user” as a human submitting a query, in reality the user may be an applica-
tion such as an execution management system [Albrecht et al. 2006] that is
submitting a query on behalf of a human user. This distinction does not affect
the operation of SWORD.

Note that an additional (and unlabeled) component in Figure 1 is the set
of resource monitors used to populate the logical database. SWORD does not
dictate the mechanisms for measuring per-node and internode attributes, so
we do not discuss such mechanisms here in detail. In Section 3.3 we describe
our deployment of SWORD on PlanetLab and mention the specific resource
monitors that SWORD uses in that deployment.

1We use the terms “resources,” “nodes,” “hosts,” and “machines” interchangeably.

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:6 • J. Albrecht et al.

2.2 Target Usage Scenarios

One of the key assumptions in our development of SWORD is that application
deployers have some incentive to avoid deploying their application on all nodes
available to them. This incentive may be altruistic, financial, performance-
related, or scientific (e.g., to evaluate an application’s performance and ro-
bustness under various configurations). Hence, SWORD is designed with two
usage scenarios in mind. When used in a “best effort” environment such as
PlanetLab, SWORD matches a user’s specification of desired resource char-
acteristics to the resource characteristics of nodes at the time the request is
made. SWORD returns an ordered list of sets of nodes, ranked by the closeness
of each set’s match to the user’s desires. The substantial heterogeneity in avail-
able node resources and network characteristics across both space (nodes and
network links) and time on shared platforms such as PlanetLab is quantified
elsewhere [Oppenheimer et al. 2006; Rhea et al. 2005]; SWORD helps users
cope with this heterogeneity when they deploy and operate their distributed
applications.

In the second usage scenario, SWORD operates in conjunction with an ex-
ternal resource allocation or admission control mechanism such as might be
the case with Grid systems [Foster and Kesselman 2003]. Here, the resource
allocation system might augment the measurement database with information
about which resources each user can access, at what cost, and during what
time periods. Queries would then specify a desired period of time for using the
requested resources, and candidate nodes would be filtered to exclude nodes
unavailable to a user for the requested period. Additionally, the financial cost
of each returned configuration is indicated as a function of the total utility of
the resources. Although our deployment of SWORD thus far has been in a “best
effort” environment, we expect to integrate it with resource allocation tools such
as SHARP [Fu et al. 2003] or SNAP [Czajkowski et al. 2002] in the future, to
support arbitrated usage scenarios.

In both usage scenarios described before, SWORD assumes that users con-
sult an out-of-band mechanism for determining what the valid query attributes
are for the target infrastructure. SWORD places few restrictions on the format
and type of attributes available to the user. We discuss the acceptable formats
in detail in Section 2.4. SWORD supports queries for any attribute in the log-
ical database, which includes any values that the target infrastructure has a
mechanism for measuring and reporting. Some example attributes are avail-
able operating systems, per-node measurements such as load and free memory,
internode measurements such as latency and bandwidth, information about
node firewall status, and disk protection requirements. The live deployment of
SWORD on PlanetLab uses a Web page that lists all available attributes.

2.3 Query Semantics

Two observations guide the design of SWORD’s query representation. First, we
observe that it is common for distributed services to be composed of groups of
nodes that cooperate closely within a group, and, in some cases, more loosely
among groups. One simple example is a “client-server” Web application, where

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:7

the servers are a group of well-connected high-bandwidth, powerful machines,
and the clients are less powerful, geographically distributed machines. A survey
of common Grid applications, described in Kee et al. [2005], mentions that some
scientific applications desire collections of tightly coupled groups of nodes. In
addition to these examples, consider the following more specific scenarios.

—An Internet search engine consists of a dozen sites distributed worldwide
that are close (in network topology) to various large user populations. Each
site is comprised of a number of nodes which together hold a full copy of
the search index. Nodes within a site coordinate in an all-to-all fashion to
implement techniques such as parallelized index searching and cooperative
caching. Among sites, a small number of nodes communicate periodically to
share newly crawled data. This service desires sufficient per-node storage,
low-latency and high-bandwidth network links among nodes in each site, and
at least one high-bandwidth link to connect each pair of sites.

—A data-intensive scientific application utilizes data stored in several geo-
graphically distributed data warehouses. The application needs a few nodes
near each data source with low-latency and high-bandwidth connections to
the data source to perform filtering and summarization of data from that
source. Moreover, it requires a large number of powerful compute nodes with
low-latency, high-bandwidth connections among one another to perform a
distributed computation over the data received from the nodes that perform
filtering and summarization.

—A content distribution network such as CoDeeN [Pai et al. 2003] wishes to
place instances of its service on nodes near each of several geographically dis-
tributed user populations, with low-latency, high-bandwidth links among the
nodes for efficient transfer of content between forward and reverse proxies.
Moreover, to support high workloads, the application deployer wants each
instance to be not a single node, but rather a “virtual cluster” of several ma-
chines, all nearby in network topology and with low-latency, high-bandwidth
links among them.

With these examples as motivation, resource specifications in SWORD focus
on the notion of groups that capture equivalence classes of nodes. Each group
consists of nodes with similar per-node and internode characteristics, as well
as constraints between pairs of nodes in different groups.

The second observation guiding the design of SWORD’s query semantics is
that applications have varying sensitivities to deviations from specified per-
node and internode characteristics. Thus, rather than specifying a single ac-
ceptable value for the amount of free memory desired, for example, we give
users the flexibility to specify a range of acceptable values for free memory, and
assign a utility to this range. To achieve this, users specify absolute require-
ments on per-node and internode characteristics, stricter preferred per-node
and internode characteristics, and the sensitivity of their application to devi-
ations from the preferred values. With this method, nodes whose value for an
attribute fall within the absolute required range are ranked by their suitabil-
ity based on their deviation from the preferred range. The user describes this

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:8 • J. Albrecht et al.

sensitivity using per-attribute penalty functions, which can be thought of as
the inverse of utility functions. The penalty function is designed to allow the
user to express the application’s sensitivity to each attribute and the relative
importance of preferences for different attributes.

For example, consider the small Internet search engine, with large user popu-
lations in North America and Europe. The service operator requests two groups
of nodes, one in each of these geographic regions. With respect to per-node stor-
age, the operator requests that all machines selected for the Europe group have
at least 1000MB of free disk space, but that under constraint, machines with
at least 300MB of free disk space are acceptable. Any candidate machine with
between 300 and 1000MB of free disk space is assigned a penalty proportional
to the deviation from 1000MB. Machines with more than 1000MB of free disk
space are assigned a zero penalty, and machines with less than 300MB of free
disk space are discarded. In this example, the acceptable range of values for
free memory is [300MB, infinity]. The preferred range of values in this example,
which is always a subset of the acceptable range, is [1000MB, infinity]. SWORD
responds to this query with a group of nodes that are the lowest-penalty con-
figuration (defined as the sum over all groups of each member node’s penalty,
taking into account per-node, internode, and intergroup constraints) that meets
all of the resource requirements specified in the query.

2.4 Expressing Queries

SWORD offers two query syntaxes: a “native” XML syntax and the ClassAds
syntax [Raman et al. 1998] used by the Condor workload management tool. Be-
cause the standard ClassAds syntax is somewhat limited and cannot be used to
express internode properties, SWORD users can only constrain and rank config-
urations based on per-node properties when using the ClassAds syntax. When
evaluating queries expressed using ClassAds syntax, we invoke the ClassAds
evaluator rather than our optimizer. The ClassAds evaluator is computation-
ally simpler than SWORD’s native optimizer because the ClassAds evaluator
only considers per-node properties; ranking a configuration is therefore linear
in the number of nodes in the configuration. In contrast, internode and in-
tergroup constraints make SWORD’s optimization problem exponential in the
number of nodes.

The native SWORD XML syntax for a sample query that might be issued by
the search engine operator appears in Figure 2(a), with the corresponding re-
sponse shown in Figure 2(b). For clarity of presentation, we have converted the
XML syntax that SWORD takes as input into a more human-readable format
that structurally matches SWORD’s actual XML syntax. Figure 3 shows the
equivalent query using ClassAds syntax, minus the internode and intergroup
constraints and rankings based on them.

A native SWORD XML query takes the form of an XML document with
three sections. The first section of a SWORD query allows the user to request
that the query be processed as a continuous query rather than as a default
one-time-only query. The RequeryInterval directive specifies the frequency, in
seconds, at which the query should be reprocessed. When the user first issues

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:9

RequeryInterval 60
Group NA
NumMachines 4
Required Load [0.0, 2.0]
Preferred Load [0.0, 1.0], penalty 100.0
Required FreeDisk [500.0, MAX] (MB)
Preferred FreeDisk [1000.0, MAX], penalty 0.2
Required OS [‘‘Linux’’]
Required AllPairs Latency [0.0, 20.0] (ms)
Preferred AllPairs Latency [0.0, 10.0], penalty 2.0
Required AllPairs BW [0.5, MAX] (Mb/s)
Preferred AllPairs BW [1.0, MAX], penalty 2.0
Required Location [‘‘NorthAmerica’’, 0.0, 50.0] (ms)
Group Europe
NumMachines 4
Required Load [0.0, 2.0]
Preferred Load [0.0, 1.0], penalty 100.0
Required FreeDisk [300.0, MAX] (MB)
Preferred FreeDisk [1000.0, MAX], penalty 100.0
Required OS [‘‘Linux’’]
Required AllPairs Latency [0.0, 20.0] (ms)
Preferred AllPairs Latency [0.0, 10.0], penalty 2.0
Required AllPairs BW [0.5, MAX] (Mb/s)
Preferred AllPairs BW [1.0, MAX], penalty 2.0
Required Location [‘‘Europe’’, 0.0, 50.0] (ms)
InterGroup
Required OnePair BW NA Europe [3.0, MAX] (Mb/s)
Preferred OnePair BW NA Europe [5.0, MAX], penalty 0.5

(a)

SWORD Groups

Name: Group NA
Max Latency: 20.0 ms
Min Latency: 0.0 ms
Overall Group Cost: 4.1
Group Size: 4
planetlab6.nbgisp.com
planet1.halifax.org
planet02.csc.ncsu.edu
planetlab1.kscy.org

Name: Group Europe
Max Latency: 20.0 ms
Min Latency: 0.0 ms
Overall Group Cost: 2.2
Group Size: 4
planetlab-02.lip6.fr]
planetlab2.dcs.ac.uk]
planetlab-01.lip6.fr]
planetlab2.uni-kl.de

Total cost: 6.3
Total query time: 0.095 s

(b)

Fig. 2. (a) Sample query in native SWORD syntax. The actual implementation of SWORD uses an
XML representation of this information; (b) sample SWORD response, indicating the IP addresses
and hostnames of the resources found that meet the requested criteria.

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:10 • J. Albrecht et al.

Fig. 3. Sample query using ClassAds syntax.

their query, they receive in response the optimized mapping of available nodes
to groups in the query, the nodes’ resource measurements (this is optional and
not shown in Figure 2(b)), and the penalty associated with the mapping. Every
RequeryInterval seconds after the query was initially issued, SWORD recom-
putes the new optimal mapping and returns to the user the new mapping and
the penalty difference between this mapping and the one originally returned.
The user can monitor the stream of penalty differences returned by SWORD
over time. If the difference reaches an application-specific criteria, perhaps ex-
ceeding a predefined threshold or exceeding a predefined threshold consistently
for some period of time, the user can compare the original and new mappings
to decide, for example, which application instances to migrate to new nodes.
In the future, we plan to explore the task of optimizing the new mapping for
minimal application disruption; in other words, we will determine the optimal
mapping that migrates the fewest application instances while still producing a
low-penalty configuration.

Recall that one of our design goals was to allow users to define topologies
of interconnected groups. The second section of the SWORD query defines the
groups. It specifies the number of nodes in each group, as well as the constraints
on the per-node and internode attributes within each group. The value of an
attribute can be a static value (e.g., an operating system), an instantaneous
measurement (e.g., the node’s current free memory measurement), or a statis-
tical property of a base attribute (e.g., the variance of a node’s load over the
past hour). SWORD supports floating-point, string, Boolean, and network coor-
dinate data-types. Network coordinate constraints allow the user to specify that
a node must be located within a desired latency of any other node in SWORD.
This feature is useful for deploying instances of a service near known user
populations, as in our search engine and CDN examples, or near data sources,
as in our Grid example. SWORD tracks the network coordinates of a set of
reference nodes in common geographical regions, and uses the network coordi-
nate distance between candidate node and reference node to determine whether
the candidate node is within desired latency of the specified region. Note that
only user-specified attributes matter in a SWORD query. If an attribute is not
specifically defined in a query, it is not evaluated or even considered by the
query processor.

The third section of a SWORD query specifies pairwise constraints between
individual members of different groups. These constraints are used to ensure

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:11

that at least one pair of nodes that exist in different (and disjoint) groups meet
some desired requirement. For example, suppose a user requests two groups
of nodes that are physically separated into two distinct geographic regions. An
intergroup constraint defined in the third section of the query is then used to
request that at least one network link between the groups has some minimum
amount of available bandwidth. We note that because an arbitrary number
of intergroup constraints may be specified, SWORD is sufficiently flexible to
describe any overlay network graph; in the worst case, every node is its own
group, and every edge is represented by a pairwise constraint between the two
nodes that the edge connects.

To further clarify the structure of a SWORD query, consider our earlier exam-
ple query shown in Figure 2(a) that shows a request for two groups of resources.
The first group consists of four nodes in the North America (NA) group. The
query requires that the operating system on these nodes be Linux, and that the
node be located within 50 ms, calculated using network coordinates, of a refer-
ence SWORD node in North America. The query further requires that nodes’
load be less than 2.0, free disk space be at least 500MB, internode latency no
more than 20 ms, and internode bandwidth no less than 0.5Mb/s. The Europe
group is defined identically, except that the free disk space must be at least
300MB. The “Preferred” clauses describe penalty functions, which we explain
shortly. Also in our sample query, the third section defining intergroup con-
straints indicates that the user wants a pair of nodes such that one node is in
the NA group, one node is in the Europe group, and the bandwidth between the
two nodes is at least 3Mb/s. Figure 2(b) shows a typical SWORD response to
this sample query.

2.5 Penalty Functions

Although SWORD is commonly used to simply find nodes meeting user-specified
requirements, a key feature of SWORD is its ability to rank node configurations
according to user preferences. These preferences are defined by a “penalty func-
tion” associated with one or more attributes on a per-group basis. To simplify
user-query syntax, we allow penalty functions of a restricted shape that we
believe is useful for approximately characterizing applications. In summary,
the penalty function is defined by the “Required” and “Preferred” clauses for an
attribute. The resulting configurations that SWORD returns match all require-
ments and are ranked based on their overall penalty or cost. The overall penalty
associated with a node is taken as the sum of the per-attribute penalties asso-
ciated with this node. The overall penalty of a group is computed by summing
the per-node penalties of all members, in addition to the internode penalties
of each link. The overall penalty of a configuration is the sum of the overall
group penalty and the intergroup attributes across all groups. Note that for
queries specified using the ClassAds syntax, the penalty function is defined by
the “rank” statement, which defines the rank of a candidate node as a function
of the per-node attributes of the node.

For floating-point attributes, Figure 4(a) shows that the SWORD penalty
function has five regions: two regions of infinite penalty where attribute values

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:12 • J. Albrecht et al.

Fig. 4. (a) Floating-point attribute penalty function; (b) string attribute penalty function.

are either too high or too low to be useful to the application, a preferred region
of zero penalty, and two constant-slope regions starting at the endpoints of the
preferred region. Notice that the preferred region defines a subrange of the
required region. The penalty function for a floating-point attribute takes the
form

Required attr [abs_min, abs_max]
Preferred attr [pref_min, pref_max], penalty k.

The k value maps a deviation from the preferred region to an abstract penalty
unit. It therefore indicates how sensitive the application is to changes in the
attribute’s value (larger k denotes more incremental penalty per unit change in
the attribute, while smaller k denotes less incremental penalty per unit change
in the attribute) and defines the relative weighting of attributes.

Although most resource-related attributes are floating-point quantities,
users also have the ability to specify requirements and preferences for string
attributes such as operating system and machine architecture. Figure 4(b) il-
lustrates the penalty function for a string, which takes the form

Required attr [name1, name2, name3, name4, name5, name6]
Preferred attr [name1, name2, name3], penalty p1
Preferred attr [name4, name5, name6], penalty p2.

This penalty function associates penalty p1 with discrete values name1, name2,
and name3, and penalty p2 with discrete values name4, name5, and name6. Any
values that meet the “Required” clause for an attribute but are not mentioned
in a “Preferred” clause for that attribute are implicitly assigned a penalty of 0.

Boolean attribute penalty functions are of the same form as string attribute
penalty functions, but the only allowed strings are “true” and “false”. Network
coordinate attribute penalty functions are of the same form as string attribute
penalty functions, but in place of an arbitrary string they use a name that maps
to a specific node, and a range of latencies from that node.

One extension to this work is the characterization of sensitivity to resource
constraints for real applications. We believe our assumptions that the overall

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:13

penalty is the sum of independent per-attribute penalties and that the penalty
associated with an attribute can be approximated by a piecewise function are
reasonable first approximations that are suitable for the majority of our users.
While a simple piecewise function restricts the form of the penalty function for
a small subset of our more advanced users, we currently believe that keeping
the query syntax somewhat simple and intuitive for all users is important.

3. DESIGN AND IMPLEMENTATION

In addition to defining a resource specification language, Section 2 established
the need for a logical database and query processor for storing and querying
monitoring data, and an optimizer that finds an optimal mapping of resources
to groups in the user’s query. Given the design goals of Section 1, all of the
components of SWORD must scale to large numbers of resources without sac-
rificing availability. For the logical database, this means we require sufficient
storage (disk and memory) and network capacity to transmit and store the mea-
surement updates from all nodes in the system. For the query processor, each
node needs sufficient network capacity and memory to receive queries, filter
nodes based on per-node attributes, and to forward the results as appropriate.
The optimizer requires sufficiently many CPU cycles and memory to complete
at least a partial exponential search over the candidate nodes returned from
the query processor. For per-node attributes, the storage, network, and memory
requirements increase linearly as the number of nodes and metrics in the sys-
tem increases. While per-node attributes scale linearly, the storage, network,
and memory requirements for internode attributes scale exponentially as the
number of nodes increases. In the following paragraphs, we describe how we
achieve the desired scalability and availability in the implementation of our
logical database and query processor in Section 3.1, as well as the design of our
optimizer in Section 3.2.

3.1 Logical Database and Query Processor

SWORD’s query processor is responsible for retrieving those per-node and in-
ternode measurements from the logical database that are needed to satisfy a
query of the form described in Section 2.4. Recognizing that it may be useful for
the query processor to treat per-node attributes differently from internode at-
tributes, we split the retrieval of per-node attributes and internode attributes
into two separate phases. In this section, we first describe several alterna-
tives for storing and retrieving per-node attributes. Here the core algorithm
of interest is multi-attribute range search to identify the set of nodes whose
measurements match all ranges of per-node requirements for some group in
the query, and that could therefore potentially be placed into one of the groups
in the query response. In Section 3.1.3, we discuss alternatives for storing and
retrieving internode attributes.

3.1.1 Per-Node Attribute Alternatives. As previously mentioned, the core
algorithm of interest for retrieving per-node attribute data is the multi-
attribute range search. To better understand what is meant by multi-attribute

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:14 • J. Albrecht et al.

range search, consider a query that requests a group of nodes having load av-
erage between 0.0 and 2.0, and free disk space greater than 100MB. Logically,
to satisfy this query, a join operation must be performed over the sets of nodes
whose individual attributes fall within the desired ranges. One approach to sat-
isfying this query is a centralized architecture where a central database collects
and stores all nodes’ reports of load and free disk space, and maintains indexes
on load and disk space to quickly find nodes that meet the required ranges. One
potential problem with this alternative is its lack of scalability as the number
of nodes increases, which may also reduce the overall system availability. Thus,
we look to distributed architectures in addition to centralized approaches, and
compare their performance. Figures 5 and 6 show four different database and
query processor architectures.

Before discussing our specific design alternatives, we must first define some
basic terminology. A node that wishes to offer its resources through SWORD
joins the SWORD infrastructure and collects resource-monitoring data locally.
This reporting node periodically sends a measurement report to one or more
SWORD servers according to the query processor architecture in use. A node
need not be part of the SWORD infrastructure to submit queries. To issue a
query, a client node sends a query to any node in the SWORD infrastructure.
This query node that receives the request acts as a proxy into the SWORD
infrastructure, potentially issuing one or more SWORD subqueries to one or
more remote SWORD servers, again depending on the query processor archi-
tecture in use. The query node collects the necessary information to satisfy the
query and returns the resulting node list back to the client, along with the
measurement values of the attributes in the query. In our implementations,
the reporting node, server, client, and query node roles are implemented on the
same set of nodes.

Within this framework, we explore alternatives for the design of our logi-
cal database and query processor, focusing on how per-node attribute data is
organized among the servers, and how a query is satisfied. How the data is
organized dictates where a reporting node sends measurement reports, where
and whether query nodes send subqueries, and how the query node collects re-
sults. Overall, the alternatives we explore fall into three categories: distributed,
centralized, and a hybrid between distributed and centralized. We implement
four solutions in total: two distributed approaches that organize servers into a
DHT (distributed hash table) overlay, one centralized approach that uses clus-
ters of fixed servers, and one hybrid option that combines the distributed and
centralized approaches, storing the measurement reports on nodes in the DHT
overlay and storing on fixed servers an index that maps DHT key ranges to
DHT server IP addresses.

A centralized architecture for SWORD consists of a single SWORD server
that collects measurement reports as <node,attribute,value> triples from
reporting nodes. It builds a database, each of whose rows contain all of the
information from a single reporting node including its name, and one column
for each reported attribute. Additionally, the server maintains indexes over one
or more attributes. Each index maps ranges of an attribute to those rows that
currently record values of this attribute in the corresponding range. Answering

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:15

Fig. 5. (a) SingleQuery. For updates, the full report is routed to the node responsible for a = 7 and
the node responsible for b = 15. For queries, the query is routed to a node chosen randomly among
those responsible for values of a between 2 and 391, and forwarded to all other nodes responsible
for those values; (b) MultiQuery. For updates, the a measurement is sent to the node responsible for
a = 7, and the b measurement is sent to the node responsible for b = 15. For queries, the a portion
of the query is sent to one randomly chosen node responsible for values of a between 2 and 391,
and forwarded to all other nodes responsible for those values. The same is done simultaneously for
the b portion of the query.

a query then involves using the index to retrieve the rows for the value range
of interest for one of the attributes of interest, and then filtering out those rows
that do not meet the desired values of the other attributes. The final set of rows
contains measurement reports from those nodes that meet all criteria in the
query. Since a single, central server does not scale well and is a single point of
failure, we chose to implement a variation of this design that uses clusters of
fixed servers, rather than a single server, to improve scalability and fault toler-
ance. In this approach, we assign the reporting nodes to one (or more for added
fault tolerance) of the servers in our fixed server cluster. Then each of N fixed
servers becomes responsible for maintaining all the current attribute values for
(at least) 1/N of the reporting nodes. Assuming there is sufficient bandwidth
and CPU power for the fixed servers, this solution provides much better scal-
ability than a single-server approach, since each fixed server requires 1/N of
the bandwidth and CPU power that a single server would need for comparable
performance.

The data storage and query processing becomes more complex when em-
ploying a distributed architecture. One option that we explore for distributed
data storage, which is common in traditional distributed databases, is dynamic
range partitioning: partitioning the data space according to dynamic attributes
and ranges of values for these attributes. For instance, a subset of SWORD

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:16 • J. Albrecht et al.

Fig. 6. (a) Fixed. For updates, the full report is sent to one of N servers chosen at random. For
queries, the client sends the query to one of N servers chosen at random. The server that receives
the query, called the querying node, sends the query to each of the other N − 1 servers; (b) Index.
Updates are handled identically to SingleQuery. A query is first routed to the set of index servers
responsible for the range specified in the query, and the index servers forward the query to the
appropriate nodes in the DHT.

servers would become responsible for handling updates for all machines whose
load average is between 0.0 and 1.0, a second subset for all machines whose
load average is between 1.0 and 2.0, a third subset for machines that have be-
tween 100MB and 200MB of disk space, and so on. Given our target operating
conditions, choosing a dynamic attribute such as load works just as well as a
static attribute as the basis for range partitioning. Since we expire data quickly
in our database to avoid maintaining stale information, it is more important to
pick an attribute with a wide distribution of values for better load balancing
among servers, than to pick an attribute that does not change frequently.

In the distributed approaches, we focus primarily on DHT-based range search
algorithms because of their scalability, self-configuration, and high availabil-
ity. These traits constitute a good match to our target of federated platforms
that eschew centralized management, such as PlanetLab. Additionally, DHTs
are well suited to range partitioning because they automatically partition a
large (160-bit, in our case) keyspace among servers. Our DHT-based algorithms
are built on top of the Bamboo DHT [Rhea et al. 2004], though they could be
built on top of any structured peer-to-peer overlay network. We leverage the
DHT’s ability to partition responsibility for the keyspace among servers, to
deliver to the responsible node a message addressed to a key (“key-based rout-
ing” [Dabek et al. 2003]), and to enable, through “successor pointers” that or-
ganize the nodes into a linked list sorted by ascending key ranges, the visiting
of those nodes responsible for a contiguous range of keys. On top of the DHT’s

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:17

key-based routing interface we build our own soft-state distributed data repos-
itory. All non-DHT messages are sent using UdpCC [Rhea et al. 2004].

The principal alternatives we consider for the distributed approaches also ex-
plore how the amount of information stored in a measurement report impacts
performance. The information stored in a measurement report is somewhat
dependent on what the resource monitors are measuring. We currently use a
bootstrapping mechanism at startup to determine the list of available attributes
being reported by the resource monitors. This allows us to inform the reporting
nodes of those attributes that are “useful” for future measurement reports. As
detailed next, one alternative for the measurement report is to include infor-
mation only for the attribute of interest to the particular SWORD server. A
second alternative is to include all current attribute values for the particular
reporting node. These alternatives have implications for how queries are per-
formed, and have varying levels of performance depending on the workload and
deployment scenarios. The specific details of the design of our four approaches
are as follows.

—Figure 5(a) illustrates SingleQuery. A reporting node sends n measurement
reports, each containing the n attribute values it has measured, to n SWORD
servers. Each report is routed to a DHT key computed, as described later in
this section, from the value of one of the attributes in the update. While up-
dates are large (size n), in this approach a multi-attribute query need only be
sent to the set of servers responsible for the target range of one of the queried
attributes. In particular, the query is first routed to any node responsible for
any key in the query range of any attribute in the query, and it is forwarded
along DHT successor pointers to all other nodes responsible for keys in the
query range of this attribute. This technique is similar in principle to how
Mercury [Bharambe et al. 2004] performs multi-attribute distributed range
queries and how eSearch [Tang and Dwarkadas 2004] performs multikey-
word full-text searches over a DHT.

—Figure 5(b) illustrates MultiQuery. The reporting node places a single value
in each measurement report. Thus, a node reporting n attributes transmits
n 1-attribute measurement reports to n SWORD servers, with the measure-
ment report routed to the DHT key computed from the value of the attribute
in the report. This approach has the potential to reduce update bandwidth
consumption relative to SingleQuery. The downside is that to perform a query,
one set of SWORD servers must be queried for each attribute in the request.
The query node sends messages to the servers in parallel and intersects the
returned nodes to find those that satisfy all attributes in the query. Because
each server only stores information about one attribute, each server can only
filter on one attribute, so this approach can potentially return many more
nodes than SingleQuery, in which each server can filter on all attributes.
This approach resembles in some ways how multi-attribute searches are per-
formed by XenoSearch [Spence and Harris 2003] and how keyword search is
performed in Reynolds and Vahdat [2003].

—Figure 6(a) illustrates Fixed. This approach is basically a centralized datacen-
ter model with a varying number of servers. To send an update, a SWORD

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:18 • J. Albrecht et al.

node sends one copy of its measurement report to one of n infrastructure
servers that is assigned at random when the reporting node starts up, so
that approximately m/n SWORD nodes are assigned to each server when
the reporting node population is m. (Note that if redundancy is desired for
increased fault tolerance, the reporting node sends its report to kn servers,
and each server stores information for km/n nodes, where k is the level of
redundancy.) A server acting as a query node forwards the query to the re-
maining n − 1 servers, collects the results, and returns them to the querying
node or client.

—Figure 6(b) illustrates Index, which is a hybrid between the Fixed and
SingleQuery approaches. The fixed infrastructure servers hold an index con-
taining the mapping of contiguous DHT key ranges to the IP address of the
DHT node responsible for this range. Each DHT node periodically informs
one of the index servers of the range of keys for which it is responsible. The
keyspace index is range-partitioned among the fixed servers. Updates are
handled as with the SingleQuery and MultiQuery approaches. A query is
sent first to the index server(s) responsible for the key range of interest, and
these index servers then forward the query directly to those DHT nodes re-
sponsible for the requested key range(s), without having to route through the
DHT.

For all DHT-based approaches, one implementation detail relates to how the
querying node decides it has received all responses. For the Fixed architec-
ture, the query is complete when a response has been received from all queried
servers. For the other architectures, the querying node does not know ahead of
time to which, or how many, servers the query will be routed. But the querying
node does know the lowest and highest DHT keys corresponding to the range of
values to be queried. Additionally, all nodes send back the range of DHT keys
for which they are responsible when they send a reply to the querying node.
An empty response is returned if the DHT node has no matching nodes. Thus,
the querying node can keep track of gaps in the query’s key range from which
no responding node has yet indicated responsibility. As responses are returned,
the missing ranges of the query key range will shrink, until a response has
been received from the nodes responsible for each piece of the query key range.
At this point the response set is complete. The query may also eventually time
out if some messages are lost, at which time the query processor will return the
partial results received thus far.

Nodes send their measurement reports at a frequency interval of their choos-
ing. The interval chosen is indicated as a parameter (called the TTL) in the
measurement report. When a report arrives at a server, the server records the
update in memory; thus reports are soft state. The servers time out these re-
ports when the TTLs expire so that when a reporting node fails, that node will
eventually no longer appear in the result set of any query. Our use of soft state
also provides a low-overhead mechanism for recovery from failures within the
server infrastructure in DHT-based approaches: In our DHT-based approaches,
if a DHT server fails, then the next update that the DHT would have routed
to that server will instead be routed to the new server now responsible for

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:19

the report. This soft-state-with-timeout mechanism requires that the report-
ing nodes republish their measurement reports more often than their chosen
timeout interval. However, since node measurements are likely to change over
fairly short timescales, frequent republishing is arguably necessary for accurate
query answering, in any case. The alternative, using the reliable DHT storage
layer rather than our memory-only storage, would add unnecessary network,
processor, and memory overhead by replicating each piece of data on multiple
nodes, only to change this data soon thereafter.

3.1.2 DHT Keys and Load Balancing. An important design issue when
applying DHT-based range search techniques to resource discovery is how to
construct the 160-bit DHT key corresponding to a measurement value. Recall
that it is the SWORD node that “owns” this DHT key that will receive the
corresponding measurement update. To accomplish this mapping, we associate
with each per-node attribute A a monotonically nondecreasing function f A(x)
that maps a value from the range of A to a DHT key. The f A function can be
user-defined, or the user can choose to use a per-data-type default function built
into SWORD.

A reporting node sends measurement reports to servers by routing each re-
port to a DHT key f A(x) for each attribute A in the report and its corresponding
value x. A querying node sends a query to one (in SingleQuery) or multiple (in
MultiQuery) servers. Taking the example of SingleQuery, the querying node
chooses one attribute B from the query as the “range search attribute.” It com-
putes f B(m) and f B(n), where m is the lowest value in the queried range for
attribute B and n is the highest. The query node routes the query to a ran-
domly chosen key within the range f B(m) to f B(n). The receiving node replies
to the query using the information it stores and forwards the query to its suc-
cessors, which, by the structure of the DHT, form a linked list of node IDs in
sorted order. The search range wraps around to the low end of the range upon
reaching the node responsible for f B(n). This process continues until all nodes
responsible for the range of keys f B(m) to f B(n) are visited and have returned to
the querying node the matching results they store. Because our f functions are
monotonically nondecreasing, they are guaranteed to map contiguous attribute
values to a contiguous range in the DHT, making it feasible to follow succes-
sor pointers in the DHT to cover all nodes with attributes in a user-specified
range.

Our f mapping constructs the key from three parts: high-order attribute
bits, middle-value bits, and low-order random bits. The first bits of the DHT
key are attribute bits. Each attribute is mapped to a setting of the attribute bits,
which does not need to be unique. These attribute bits partition the keyspace
into subregions, each responsible for one or more attributes. Subregions allow
us to limit the worst-case number of nodes that might be visited to answer a
distributed range query (an unconstrained search on a single attribute will visit
at most all nodes in the subregion for this attribute), thereby helping to bound
query latency. Although all nodes must agree on the number of key bits used
as attribute bits, the mapping of attributes to attribute bits can be computed
autonomously, for example, by hashing the name of the attribute.

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:20 • J. Albrecht et al.

The remaining bits of the DHT key are divided between value bits and ran-
dom bits, depending on the number of values each attribute commonly takes
on. The value bits represent the value itself, while the random bits spread in-
stances of the same value among multiple nodes for load balancing of updates.
For example, a Boolean-valued attribute would be represented using 1 value
bit followed by 160 − a − 1 random bits, where 160 is the number of bits in a
key and a is the number of attribute bits. This randomization would serve to
spread “false” values over half of the nodes in that attribute’s subregion, and
“true” values over the other half. When a node issues a query, the random bits
are set to all 0 when computing the key for the lowest value in the range, and
are set to all 1 when computing the key for the highest value in the range. In
this way, the query will search all keys that could possibly have been generated
from the desired range.

Our current implementation uniformly maps the expected range of a given
floating-point attribute to the number of bits allocated to value bits. For exam-
ple, if 2 bits are used for value bits and the value represented is an integer
percentage (0 to 100), then the mapping function might map 0 through 25 to
00, 26 through 50 to 01, 51 through 75 to 10, and 76 through 100 to 11. If the
distribution of update values is known ahead of time, then more frequently
occurring values can be “spread” over more keys relative to less frequently oc-
curring values, to improve load balance for updates. Extending the previous
example, if 0 through 25 occurs three times more often than 26 through 100,
then the mapping function might map 0 through 8 to 00, 9 through 16 to 01,
17 through 25 to 10, and 26 through 100 to 11. Because we only require that
f A be monotonically nondecreasing, all values less than the lowest value in the
expected range can be mapped to all 0-value bits, and all values greater than
the largest value in the expected range can be mapped to all 1 bits. The expected
value range need not be known ahead of time to achieve a good spreading of
input values; only the range of “typical” values needs to be known, and outliers
are mapped to the two extreme endpoints.

The default function for Booleans is as described earlier. The default func-
tion for strings forms the value bits from high-order bits of the ASCII value
of the string, allowing string-prefix searches such as “all IP addresses that
begin with 128.112.” Finally, the default function for network coordinates gen-
erates the value bits using the z-coordinate [Jagadish 1990] linearization of the
three-dimensional network coordinate of the client node. (The z-coordinates
are determined using an out-of-band mechanism that maps geographic names
to corresponding z-coordinates.) This transformation enables multidimensional
range search in the n-dimensional network coordinate space via a linear search
over the z-coordinate attribute. This mapping is especially useful for the Mul-
tiQuery approach because it allows one range query to be issued (over the syn-
thetic z-coordinate) instead of three, namely one over each of three dimensions.

In summary, attribute bits reduce conflicts between identical values of dif-
ferent attributes, random bits reduce conflicts between identical values of the
same attribute, and value bits can be used to spread potentially nonuniform
value ranges to more uniform DHT key ranges. These load-balancing tech-
niques are passive, since they do not require nodes to measure or react to their

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:21

load. A second, active layer of load balancing [Karger and Ruhl 2004; Bharambe
et al. 2004] can further enhance load balance by observing load distributions
on nodes and remapping node IDs accordingly. The active and passive load-
balancing techniques are orthogonal.

3.1.3 Internode Attribute Alternatives. The process we have described thus
far retrieves the identities of all reporting nodes matching all per-node require-
ments in the query, along with the values of these attributes. A number of
alternatives also exist for handling internode attributes, which are attributes
defined between pairs of nodes, for example, internode latency or available
bandwidth. These alternatives revolve around which nodes measure and re-
port internode attributes, and how internode measurements are stored and
queried. With respect to the first issue, we can have all nodes measure and
report internode attributes, or we can elect a subset of nodes as “representa-
tives” for other nodes that are likely to have similar values for the internode
attribute in question. With respect to the second issue, we can store internode
measurements either within the DHT or externally.

The key distinction between per-node attributes and internode attributes
(and the main reason we separate the discussion into two different sections) is
the amount of data that must be stored as the number of resources in the system
increases. While per-node attributes scale linearly with the number of nodes
in the system, internode attributes scale exponentially. To reduce the resource
consumption of gathering O(N 2) internode measurements, SWORD leverages
the observation that nodes typically fall into equivalence classes for several
internode attributes. For example, the latency between node A in autonomous
system 1 (AS1) and node B in AS2 is often approximately equal to the latency
between any node in AS1 and any node in AS2. (While there are certainly ex-
ceptions to this generalization, on target infrastructures such as PlanetLab, we
find that this is true in most cases.) SWORD therefore allows arbitrary groups
of nodes to define a representative node that collects internode measurements
on their behalf. Choosing appropriate representatives is an orthogonal issue
that we do not address and might leverage existing work on network-aware
clustering [Krishnamurthy and Wang 2000; Chen et al. 2004]. The mapping
from each node to its representative is one of the per-node attributes that
nodes report; this is essentially an “object location” pointer. We allow arbi-
trary equivalence classes to be defined, perhaps on granularities smaller than
ASes.

The distributed query that retrieves internode measurements could take
a number of forms. For example, we could use an approach similar to our per-
node attribute range search, but use as the DHT key an internode measurement
range, for example “10–20 ms”, and use as the values stored at this key the list of
node pairs whose internode measurements are within that range, for example,
all node pairs whose internode latency is between 10 ms to 20 ms. The query
would visit the DHT keys corresponding to internode value ranges specified
by the internode requirements of the query, and the servers responsible for
these keys would return all nodes such that both endpoints are nodes returned
from the per-node attribute query step. Note that choosing the “resolution”

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:22 • J. Albrecht et al.

of these groups well requires some knowledge of the distribution of internode
measurements.

Alternatively, the DHT key could be a mixture of an IP address and an in-
ternode measurement range, for example, “10.0.0.1, 10–20 ms”. We could then
use as the values stored for this key the list of nodes whose internode measure-
ment from the indicated node is within that range, for example, all nodes that
are within 10 ms to 20 ms from the node 10.0.0.1. In this case, the query would
visit those DHT keys corresponding to internode value ranges specified by the
internode requirements of the query for those nodes that were returned in the
per-node attribute query step.

A third approach would be to use as the DHT key simply the IP address I
of a representative, and use as the values stored for this key a list of all other
representatives and their internode measurement from the representative with
IP address I . This approach does not allow us to perform a distributed range
query, but only a distributed query, with the range filtering done on the querying
node once it has received all pairwise measurements among all representatives
of interest.

Our distributed query processor implementation actually uses a variant of
the third approach: Instead of storing internode measurements in the DHT,
the representatives themselves store the internode measurements that they
collect. This technique saves them the bandwidth of having to publish a poten-
tially large number of internode measurements into the DHT. Such savings are
particularly beneficial if representatives measure internode attributes often,
for high accuracy. Thus, in SWORD, after a querying node receives the node
reports R from the per-node attribute range query, the querying node issues a
second distributed query, to the representative nodes indicated in R, to obtain
the internode attribute(s) of interest among these representative nodes. This
two-step process is essentially a join operation. To bootstrap this process, each
node in the system need only know the identity of its own representative. Each
node periodically reports the identity of its representative as part of its mea-
surement reports. When a representative node boots, it performs a standard
SWORD distributed query to find the identities of all other representatives in
the system, and begins measuring to them.

3.2 Optimizer Implementation

Section 3.1.1 describes how the query processor obtains and uses the per-node
measurements to create a set of candidate nodes, and Section 3.1.3 discusses
how to gather the corresponding internode measurements. It is important to
realize that the query processor designs previously discussed do not filter based
on internode measurements. They also do not compute any penalties. They sim-
ply perform a disitributed range search for per-node attributes, and then gather
the internode measurements for the candidate nodes that meet the per-node
constraints specified in the query. These candidate nodes and their correspond-
ing per-node and internode measurements are then fed to the optimizer. It is
the optimizer’s role to determine an appropriate mapping of nodes to the groups
specified in the query. The optimizer computation is not itself distributed, as

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:23

it runs only on the “query node” that receives the initial query from the client.
However, because a client may contact any SWORD node as its proxy, the com-
putation is effectively distributed on a per-request basis, assuming nodes choose
proxies randomly.

The optimizer proceeds in several steps. The input to each step is a list of
nodes organized into groups, and the output is also a list of nodes organized
into groups. Some phases use heuristics to improve their running time at the
expense of solution optimality; we describe these heuristics next, and analyze
their impact on running time and solution optimality in Section 4.2.

Phase 1 computes per-node penalties based on the penalty functions defined
in the user’s query. We take as input a list of candidate nodes from the query
processor, and the corresponding per-node and internode measurements. The
optimizer creates, for each group in the user’s query, a list of candidate nodes
sorted by the per-node penalty associated with placing that node in the group.
Note that the per-node penalty associated with placing a node in a group is not
affected by the choice of other nodes in the group. In other words, we assume
that the per-node penalties are independent from each other.

Phase 2 computes per-group penalties using the per-node penalties from
phase 1, in addition to the internode penalties associated with each group that
are computed in this phase. For each group in the user’s query, we create com-
binations of those nodes from the phase 1 candidate list that also meet the
internode constraints specified in the query. These combinations of nodes are
called candidate groups. Once all possible candidate groups have been formed
for each group specified in the user’s query, the optimizer sorts the candidate
groups based on total group penalty, which is computed by summing the per-
node attribute penalties across all nodes in the group plus the internode at-
tribute penalties. Note that, given a list of n candidate nodes for a group that
requires k nodes, there are

(n
k

)
possible candidate groups that must be con-

sidered, though all candidate groups do not necessarily satisfy the internode
requirements.

Creating groups of a specific size that satisfy the internode constraints is an
NP-hard problem; it is an instance of the k-clique search problem. Thus, as an
optimization, we form groups that use the lower-penalty nodes in the list passed
in from phase 1 before we use the higher-penalty nodes in the list. We can do this
easily, since phase 1 sorts the nodes based on per-node penalties. Furthermore,
we allow the user to specify a maximum per-group running time for this phase
of the computation. Therefore, if the computation is terminated for a particular
group before all candidate groups are enumerated, the candidate groups that
have been formed thus far will have low per-node penalties, and thus are likely
to yield groups with low overall (per-node plus internode) penalty. This heuristic
will not help, however, if the internode constraints are given much more weight
in the user’s query than per-node constraints. In such a case, groups with low
per-node penalty may not have low overall penalty, and the candidate groups
with low overall penalty will never be formed if the computation is cut short
in the way we described. The output of phase 2 is one list of candidate groups
per group in the user’s query. Each list is sorted by overall group penalty before
being passed to phase 3.

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:24 • J. Albrecht et al.

Phase 3 computes the total solution penalty based on the already-computed
per-node and internode (also called per-group) penalties, plus the intergroup
penalties computed in this phase. We enumerate a list of candidate answers
to the user’s query. These are combinations of candidate groups from phase 2
that satisfy the query’s intergroup constraints; they are therefore potential
“solutions” to the user’s query. For example, given lists from phase 2 of size a,
b, and c, phase 3 could generate up to a ∗ b ∗ c candidate answers, though not
all may satisfy the intergroup requirements.

Creating candidate answers that satisfy the intergroup constraints is again
an NP-hard problem. Thus, as an optimization, we form solutions that use the
lower-penalty candidate groups from each list passed in from phase 2 before
we use the higher-penalty groups from those lists. As in phase 2, we impose
an optional user-specified limit on the running time of this phase. If the com-
putation times out before the full search is complete, the candidate answers
that have been formed up to this point will have low per-group penalties, and
thus are likely to yield answers with low overall (per-group plus intergroup)
penalty. Analogous to our caveat on this optimization in phase 2, this heuris-
tic is not useful if the user’s query weights intergroup constraints much more
heavily than per-group constraints. In such an event, groups with low per-
group penalty may contribute significant penalty to the overall solution, and
the candidate answers with low overall penalty will never be formed if the
computation is cut short. The output of phase 3 is one or more candidate an-
swers; along with the associated penalties; these solutions are returned to the
user.

In Section 4.2, we examine several heuristics for reducing the optimizer’s
running time, possibly at the expense of solution optimality. Three-second time-
out simply runs the exponential search for three seconds and returns the best
solution found at the end of that time. The three-second time budget is evenly
divided between phase 2 and phase 3 described earlier. Top half of candidates
searches only the lowest-penalty half of the candidate groups. Top-5 candidates
tries to shortcut the previous heuristic by eliminating all but the top 5 candi-
dates for each group before running the search. Finally, since groups are sorted
based on overall penalty and the lowest-penalty groups are processed first, the
first answer found may be relatively good compared to the optimal solution.
Thus the First answer heuristic runs the exponential search but stops as soon
as the first valid solution is found.

3.3 PlanetLab Implementation and Deployment

SWORD has been running as a publicly accessible service on PlanetLab since
June 2004. A SWORD instance runs on every PlanetLab node, periodically is-
suing measurement reports. A user creates a query by either manually writing
XML or using the SWORD Web interface which automatically generates XML.
The Web interface (or publicly available command-line client) then makes a
TCP connection to any SWORD instance, and sends the text of the query over
the connection. The contacted SWORD instance invokes its query processor,
which issues a search for nodes meeting the per-node criteria and gathers the

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:25

corresponding internode requirements, subsequently invoking its optimizer (lo-
cally) using the result of the search. This node then returns to the user over
the same TCP connection the result, which is a list of nodes, the groups to
which they have been assigned by the optimizer, total penalties accrued, and, if
desired, the raw node measurements that were used in making the assignment.

SWORD can also be used programmatically. For example, the Plush
[Albrecht et al. 2006] distributed application management system takes a
user-defined description of a distributed application, and then automates the
process of finding resources, preparing them for execution, running any exe-
cutables, and recovering from failures for the duration of an application’s life-
cycle. For PlanetLab users, Plush has the ability to use SWORD as its resource
discovery and service placement component. Thus, Plush “closes the loop” of
the application deployment process, by automatically instantiating a user’s
application on the nodes returned by SWORD. The Bellagio [AuYoung et al.
2004] microeconomic-based resource allocation system similarly uses SWORD
as its resource discovery component. Motivated from the development and use
of these technologies, we present quantitative evidence that applications ben-
efit from using resource discovery services in making deployment decisions
in Oppenheimer et al. [2006].

SWORD currently uses four data sources for resource measurements on
PlanetLab: a Vivaldi [Dabek et al. 2004] network coordinates implementation
that is built into SWORD, the Ganglia [Massie et al. 2004] daemon on each
node that collects node-level measurements, and the CoTop tool [Pai 2008] in-
voked on each node to collect slice-level measurements from the slicestat [Chun
2008] sensor. Because the number of nodes on PlanetLab is relatively small,
we are able to configure every node as a “representative” without imposing
extraordinary internode measurement or storage overhead.

For SWORD’s PlanetLab deployment, we extended the query language to
allow users to specify, for each group in their query, the maximum number of
nodes that can be assigned to that group from any single PlanetLab site. This
feature allows the user some protection from correlated failures that disconnect
all of a site’s nodes from the network, such as a power failure or failure of the
site’s Internet gateway. For example, a user might request 10 nodes from 10
different sites, instead of running the risk that all 10 nodes will come from the
same site. A “site” can be defined arbitrarily; we use the simple approximation
of assigning a site ID to each node as the hash of its DNS suffix, but other
approximations such as the node’s AS number could be used, or a delegation
model could be used in which each site that joins PlanetLab is assigned a site
number by a central authority, and the site then autonomously creates subsites
by appending additional digits to their site number.

To add an attribute to SWORD, a reporting node’s administrator may choose
to use one of the four default f A functions, or a custom-written function. Our
current implementation trusts administrators to supply well-behaved f A func-
tions when they add attributes with custom f A functions to the system; pro-
tecting against malicious or misbehaving user code that might infinite loop or
crash is left as future work. Once a new attribute is installed on a reporting
node, SWORD itself can be used to distribute the attribute’s identity and its f A

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:26 • J. Albrecht et al.

function: Reporting nodes can include a list of the names of the attributes they
report, and the corresponding f A’s, in their measurement reports. All nodes
can periodically probe the full range of this attribute to retrieve all other nodes’
reported attributes and f A’s. If one node is the “seed” node that introduces an
attribute, all nodes will discover the new attribute and its f A function the next
time they conduct such a probe query.

4. PERFORMANCE EVALUATION

We are interested in evaluating the following properties of SWORD: (i) How does
the performance of the various DHT-based range search approaches compare
relative to one another and to the fixed-servers implementation? (ii) How does
workload intensity affect performance? (iii) How do our optimizer heuristics
impact optimizer performance and accuracy compared to performing the full
exponential search? (iv) How well does our system perform on PlanetLab?

In Section 4.1 we focus on the first two questions, describing the results of an
emulation-based evaluation of our distributed query processor configurations.
In Section 4.2 we address the third question, examining the performance of the
optimizer. Finally, in Section 4.3 we address the question of performance on
PlanetLab.

4.1 Emulation-Based Evaluation

Our emulation experiments focus on the performance of SWORD’s distributed
query processor that retrieves per-node and internode measurements. We
choose query latency as our performance metric because SWORD users may
periodically requery SWORD to adapt their application to changing node and
network conditions, or as the resource needs of their application change. For
our emulation experiments, we run the distributed query processor to collect
per-node and internode measurements, but we do not invoke the optimizer on
the result. We evaluate optimizer performance separately in Section 4.2, and
the end-to-end performance of the entire system, on PlanetLab, in Section 4.3.

We evaluated SWORD’s query processor on a cluster of 40 IBM xSeries PCs
with Dual 1 GHz Pentium III processors, 1.5GB of RAM, and Gigabit Ethernet.
We used ModelNet [Vahdat et al. 2002] with an INET topology [Chang et al.
2002] consisting of 10000 transit nodes, 1000 (virtual) client nodes, and 8 client
nodes per stub. In ModelNet, packet transmissions are routed through emula-
tors that are responsible for accurately emulating the hop-by-hop delay, band-
width, and congestion of a network topology. Propagation delays in the network
topology are calculated based on the relative placement of network nodes in the
plane by INET. Groups of network nodes are classified as being client, stub, or
transit, depending on their location in the network. Transit-transit links were
given 150Mb/s (OC3) bandwidth and client-stub links 384Kb/s bandwidth. La-
tencies were based on the INET topology. 1/32 of the nodes were chosen as
representatives. When evaluating the Fixed and Index approaches, the infras-
tructure servers were grouped into 4-node stub domains, each with 150Mb/s,
1 ms latency connections to their upstream transit node. For the DHT-based
approaches, we used the Bamboo DHT.

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:27

Our baseline workload consisted of measurement updates and queries is-
sued by each of 1000 virtual nodes. The content of updates were taken from a
representative one-hour portion of a trace of Ganglia measurements collected
from all live PlanetLab nodes every 5 minutes between July 2004 and October
2004. Updates contain 32 metrics collected by Ganglia during that time period,
along with Vivaldi network coordinates and several debugging attributes, for a
total of 40 attributes.

Queries contained five per-node attributes (fifteen-minute load average, free
disk space, free memory, network receive bandwidth, and network transmit
bandwidth) and one internode attribute (internode latency). Queries were for-
mulated according to a distribution such that they requested a minimum
amount of disk space that is Zipf-distributed between 10MB and 100MB (bi-
ased toward the high end of the range); a fifteen-minute load average of less
than a uniformly distributed value between 0 and 5.0; a minimum amount of
free memory that is Zipf-distributed between 0MB and 48MB (biased toward
the high end of the range), bytes per second in and out (competing traffic) that
is no more than 0.1MB/s for half of the queries and unconstrained for the other
queries, and internode latency between 0 ms and 1000 ms. Because our trace
contained valid data for only 124 PlanetLab nodes, we emulated a 1000-node
system by replicating each of the 124 entries an average of 8 times. The me-
dian number of nodes returned per query was 120 and the 90th percentile was
160. In the DHT approaches, attribute bits are assigned so that each of the 40
attributes is mapped to a subregion containing 25 nodes.

We examined the four query processor architectures from Section 3.1 un-
der a variety of workloads. For evaluating the Fixed and Index approaches,
we modified the emulated topology so that the data servers and index servers,
respectively, were each placed into N/4 groups of 4 nodes each, where N is
the number of Fixed (2, 4, 8, or 16) or Index (4) servers used. (For Fixed-2, one
group of 2 nodes was used.) As previously mentioned, each group was given
a 150Mb/s, 1 ms latency network connection to its upstream transit node, and
servers within a group were given 150Mb/s point-to-point communication links.
This configuration is intended to emulate an environment in which a service
provider has placed the N servers in N/4 geographically distributed, well-
connected colocation centers. For Index, we chose to use 4 index servers because
preliminary results showed that using fewer worsened performance, while us-
ing more did not improve performance significantly.

4.1.1 Distributed Query Latency. Figure 7(a) shows the impact of the
range-search approach and workload intensity on latency to satisfy the
range query for per-node attributes in both the SingleQuery and Multi-
Query approaches, with a workload of 3 or 4 updates/hour/node and 3 or 4
queries/hour/node evenly generated by all nodes. At higher workload rates, our
emulation cluster’s processors became overloaded for the MultiQuery approach.
The primary reason for the difference between SingleQuery and MultiQuery
is that the network bandwidth consumed by the larger number of nodes re-
turned to the querying node by MultiQuery creates sufficient congestion to over-
whelm the benefit that MultiQuery derives from sending only one attribute per

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:28 • J. Albrecht et al.

Fig. 7. (a) 90th-percentile latency of SingleQuery versus. MultiQuery approaches; (b) 90th-
percentile latency of range query approaches.

measurement report. We would expect that substantially increasing the num-
ber of attributes per update, substantially decreasing the number of attributes
per query, or decreasing the selectivity of queries would serve to somewhat re-
duce this performance difference. However, we believe our choice of these val-
ues is reasonable for an experimental resource discovery workload. Since these
experiments reveal that SingleQuery clearly outperforms MultiQuery for our
“typical” resource discovery workload by at least an order of magnitude, we do
not consider MultiQuery in the remainder of our evaluation.

Figure 7(b) shows the impact of the range-search approach and workload
intensity on the latency to satisfy the range query for per-node attributes for
SingleQuery, Index, and Fixed approaches, with a workload of 12 or 24 up-
dates/hour/node and 12 or 24 queries/hour/node, evenly generated by all nodes
(except for the servers in the Index and Fixed approaches). We see that Index
always outperforms SingleQuery. This result is reasonable because queries in
Index take three hops in parallel (one to the index server(s), one to the DHT
server(s) storing measurements, and one back to the querying node), while a
query in SingleQuery visits up to 25 nodes.

The Fixed approaches vary greatly in performance. With two servers (Fixed-
2), Fixed underperforms the DHT-based approaches (SingleQuery and Index)
for all workloads. This is likely due to the limited bandwidth and processing
power that using only 2 servers provides. With four servers (Fixed-4), Fixed
outperforms the DHT-based approaches for all but the 12 updates/hour + 24
queries/hour workload. Again, the main limitation for the more intense query
workload was the lack of sufficient bandwidth and processing power on the
server nodes. With 8 or 16 servers (Fixed-8 or Fixed-16), Fixed always outper-
forms the DHT-based approaches (SingleQuery and Index). This result suggests
that a more centralized approach using a fixed infrastructure cluster with a rel-
atively small number of nodes and high-bandwidth network connections better
supports the resource discovery workload that we tested than does an infras-
tructure based on end-nodes organized into a DHT. As predicted, the main
problem experienced with the centralized architecture was lack of scalability

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:29

due to insufficient network bandwidth, and those smaller cluster configurations
that performed poorly did so because of network congestion, which we verified
by examining router queues.

Although the aforementioned workloads included retrieval of internode mea-
surements from representatives, our graphs show only the time for the range
search over per-node measurements. We found that the end-to-end query pro-
cessor latency (i.e., including per-node attribute and internode attribute re-
trieval) followed exactly the same trend as the per-node attribute latency alone.
The explanation is that internode measurement retrieval is affected by the
same congestion as per-node measurement retrieval. We found that the amount
of time to retrieve internode measurements was about 600 ms for DHT-based
approaches, about 450 ms for the Fixed-8, Fixed-16, and Fixed-4 workloads that
outperformed the DHT approaches in Figure 7, and was 1000 ms or greater for
the remaining Fixed variants and workloads.

Our use of representatives has a significant impact on 90th-percentile end-
to-end query processor latency. For the 12 updates/hour/node, 12 queries/hour/
node workload, we compared selecting all nodes in the system as representa-
tives to selecting only half of them. This latter configuration reduced query
latency by more than 70% for the Fixed-2 and Fixed-4 implementations, where
network congestion at fixed servers is high and bandwidth consumption savings
are thus very valuable, and by 7% in the SingleQuery approach.

4.2 Optimizer Performance

Due to the complexity of the searches that the optimizer performs, it is benefi-
cial to consider some heuristics that reduce the size of the space that must be
searched. Although more complicated algorithms exist for solving this optimiza-
tion problem, we chose to evaluate some simple heuristics that attempt to short-
cut the full exponential search while still finding a solution that is close to the
optimal. The specific heuristics that we evaluated were described in Section 3.2.

We measured the performance of the optimizer on a single 3 GHz Pentium 4
processor node with 512MB of RAM. The workload consisted of queries contain-
ing 2 or 3 groups. The queries required load less than a value between 0 and 5,
internode latency within each group of less than 100 ms, and at least one inter-
group link between 0 ms and 200 ms. The preferred attribute values included
load less than 1, an internode latency within each group of between 5 ms and
50 ms, and at least one intergroup link between 50 ms and 100 ms. The under-
lying data used for all queries was taken from a snapshot of Ganglia system
resource statistics and all-pairs-ping measurement from PlanetLab in October
2004. The queries were satisfied by less than 20% of the possible group com-
binations for all experiments. We considered two settings for query penalties.
For half of the experiments, all attributes (per-node load, pairwise intragroup
latency, and intergroup latency) were assigned equal penalties. For the other
half, the intergroup latency attribute was assigned a penalty 10 times greater
than those of the the per-node and internode attributes, to explore the patho-
logical case where the sorting based on per-node and per-group total penalties
does not provide any benefit to the complete search.

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:30 • J. Albrecht et al.

Fig. 8. (a) Runtime of optimizer using different heuristics, shown as percentage of the runtime to
complete full exponential search. The x-axis shows the total number of possible group combinations
that would be checked if the complete exponential search were run; (b) accuracy of optimizer
heuristics relative to the optimal solution found in full exponential search. The x-axis shows the
total number of possible group combinations that would be checked if the complete exponential
search were run. The “Equal” bars represent queries where the penalties assigned to all attributes
are weighted equally. The “Unequal” bars represent queries in which the penalty assigned to the
intergroup constraint is 10 times greater than the per-node and per-group internode attributes’
penalties. A missing bar indicates that no solution was found.

To quantify the benefits of the various heuristics, Figure 8(a) shows the run-
ning time of the optimizer using each of our heuristics as a percentage of the
optimizer running time when using full exponential search. The time for full ex-
ponential search was 0.28, 1.52, 8.75, and 72.8 seconds for 841, 24389, 103823,
and 729000 group combinations examined, respectively. For small numbers
of possible group combinations, the benefits of using the heuristics are rela-
tively small, since the runtime for the full search is small. However, for larger
problems, the savings gained from using a heuristic is significant, reducing a
72-second search to a few seconds.

Reducing the time of the search is only useful if the result returned maintains
an acceptable level of accuracy, which in this case implies that the solution is
found (if such exists) and is still close to optimal. Figure 8(b) shows the accuracy
of the various heuristics relative to the results that the full exponential search
finds. These results show that some of the heuristics perform significantly better
than others. The 3-seconds heuristic performs well for small searches, though
for half of the experiments the full exponential search completed in less than
3 seconds, in any case. The top-half heuristic performs well in all cases and,
for our workload, actually finds the optimal solution in all but one case. The
first-answer approach is the least accurate heuristic, particularly in those cases
where the intergroup constraint is heavily weighted, returning solutions with
penalties substantially higher than the optimal penalty. The explanation for
this result is that intergroup latency is the dominant factor in the total penalty
achieved, so the sorting that helps to find good answers early by considering

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:31

groups with lower penalties first does not have a noticeable impact. Finally, the
top-5 heuristic does not find a feasible solution at all in half of our cases, while
the other approaches always do. Thus we conclude that the top-half heuristic
offers the best performance-accuracy trade-off.

4.3 End-to-End Performance on PlanetLab

In addition to evaluating SWORD in an emulated environment, we evaluated
SWORD on PlanetLab. Compared to ModelNet, PlanetLab has a smaller num-
ber of nodes, more processor contention, and a wide range of internode band-
widths. We ran our experiments on PlanetLab in July 2004 on two sets of nodes
(one is a subset of the other): (i) all 214 usable nodes that were connected to the
commodity Internet, that is, all usable nodes that were not connected only to
the Internet-2;2 and (ii) the subset of the first set that is used by CoDeeN, a con-
tent distribution network that runs on PlanetLab. This second set of 108 nodes
are all at universities in North America and tend to have high-bandwidth, low-
latency network paths to one another. We deployed SWORD in the SingleQuery
configuration.

Each node reported the same number of metrics as our ModelNet experi-
ments. We ran the experiments with updates at a 2-minute interval and at a
4-minute interval, but found no significant difference in the performance re-
sults, so we report only the 2-minute interval results here. We measured query
latency when a single query was in the system at a time; the measured times
thus represent the best case latency. We issued a series of queries, each re-
questing two groups of 4 nodes each, such that the internode latency among all
nodes within each group was between 0 ms and 150 ms, and the load on each
node was between 0 and N , where N was varied in each query so as to cover
all integers between 1 and 15, inclusive.

Figures 9(a) and (b) show the median latency for the distributed range query
and the optimizer runtime, as a function of the upper bound of the load re-
quested (and hence the number of candidate nodes returned) with a query rate
of one query per minute. The number of candidate nodes returned ranged from
108 to 214 for the all-non-I2-nodes configuration, and 34 to 108 for the CoDeeN-
only configuration, depending on the range of loads requested. The number of
DHT nodes searched ranged from 2 to 9 and 1 to 6 for the two configurations,
respectively.

Figure 9(a) shows that SWORD’s range search performs reasonably well on
PlanetLab, returning results to the optimizer within a few seconds, even when
all nodes are returned by the range query. The graph also shows that for these
relatively small configurations in which at most 9 nodes are searched, most per-
formance effects are in the “noise”, except for the number of candidate nodes re-
turned. This observation suggests that if real-world user queries on PlanetLab
commonly return hundreds of candidate nodes, we can improve SWORD’s per-
formance by returning fewer nodes at the expense of providing approximate
solutions, or by compressing returned data. Figure 9(b) shows SWORD’s opti-
mizer latency increasing as the number of candidate nodes increases. Here the

2Bamboo needs symmetric reachability among nodes, hence this restriction.

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:32 • J. Albrecht et al.

Fig. 9. (a) Range query median latency versus width of range searched for SingleQuery on
PlanetLab. The error bars show the 90th- and 10th-percentile values over 10 runs; (b) optimizer
median latency versus width of range searched, on PlanetLab. The error bars show the 90th- and
10th-percentile values over 10 runs.

Fig. 10. Range query latency versus workload rate, expressed as total queries per minute issued
across the entire system. The error bars show 10th- and 90th-percentile values over 10 runs.

increasing latency is not due to data transfer, but to the larger input to the
optimizer algorithm. This graph shows that on a shared platform where other
jobs are contending for the processor (PlanetLab nodes in July 2004 were often
highly loaded), optimizer latency is potentially significant if a large number of
candidate nodes are returned.

Finally, Figure 10 shows range query latency as a function of query rate for
SWORD in three configurations: the SingleQuery configuration, a Fixed-1 con-
figuration in which all measurement reports and queries are sent to a single
node, and a Fixed-2 configuration in which half of all measurement reports
are sent to one node, half of all measurement reports are sent to a second
node, and all queries are sent to both nodes. The workload for this experiment
was identical to that for the all-non-I2-only nodes configuration of the previous

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:33

experiment with the requested load set to 15. However, this experiment was
run several months after the one described earlier in this section, so the abso-
lute latencies are not directly comparable. The error bars in the graph corre-
spond to the SingleQuery configuration; we omit error bars for the centralized
configurations, for clarity. The important observation in this graph is that for
these workloads, the Fixed-2 centralized implementation always outperforms
the DHT-based implementation, and the Fixed-1 centralized implementation
outperforms the DHT-based implementation with a query rate at or below 40
queries per minute.

5. OBSERVATIONS AND LESSONS LEARNED
FROM SWORD ON PLANETLAB

In this section, we present several lessons learned from our deployment and
operation of SWORD on PlanetLab for several months. For each observation,
we have italicized the point we feel generalizes to services beyond SWORD and
likely in future testbeds other than PlanetLab.

The claim has been made that DHTs are important distributed application
building blocks because a service built on top of a DHT will automatically in-
herit the DHT’s self-configuration, self-healing, and scalability. We found this
claim to be largely true, although our centralized architectures did outperform
distributed designs when there was sufficient bandwidth and processing power
for the central servers to operate. Using a DHT also simplified the implementa-
tion of our distributed architectures. Bamboo’s neighbor heartbeat mechanism
and node join bootstrap protocol automatically repartitioned the keyspace (and
hence the range-partition mapping of measurement reports to servers) when
DHT nodes joined or left, voluntarily or due to failure or recovery, without need
for human involvement or application-level heartbeats within SWORD.

Our second observation stems from the fact that managed infrastructure
distributed testbeds like PlanetLab tend to be small, particularly in contrast
to end-user peer-to-peer networks like Kazaa [Kazaa 2001] or public resource
computing networks like BOINC [Red Herring Magazine 2004], both of which
typically have thousands to perhaps millions of nodes participating at any one
time. To handle the resource discovery needs of a platform the size of PlanetLab,
a resource discovery system with a few centralized server sites, each containing
one or a few clustered machines, provides sufficient performance, as Figure 10
suggests.

More generally, at such small scales, simple architectures frequently out-
perform peer-to-peer architectures. This advantage is especially true for
noncompute-intensive, low-bandwidth applications, as such applications by
their nature will not benefit significantly from the many extra processors and
network links that peer-to-peer architectures provide. SWORD is an example of
such an application: Although its performance does benefit from parallelizing
the work of the optimizer on a per-query basis, the dominant performance factor
is the sequential visiting of nodes during the range search, with each traversal
incurring one average-latency network hop. Such multiple wide-area network
hops are unnecessary when the application is deployed across a small testbed.

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:34 • J. Albrecht et al.

Thus, our observation is that when deploying a system that targets a platform
the size of PlanetLab, it may be worthwhile to evaluate a centralized implemen-
tation before embarking on a peer-to-peer implementation. Among those factors
that should be considered are the following.

—Performance for Expected Workload and Scale. As already mentioned, the
trade-offs between peer-to-peer and more centralized implementations are
highly dependent on expected system scale and workload.

—Availability and Disaster Tolerance Requirements. DHTs provide node and
network link failure and recovery detection as well as automatic reparti-
tioning of ownership of the keyspace, in the event of node and network link
failure and recovery. Such automatic failover is also possible in centralized
implementations, though typically requiring an external mechanism such as
a front-end failure-detecting load-balancing switch. DHTs provide disaster
tolerance when they replicate data; nonpeer-to-peer multisite implementa-
tions can also provide disaster tolerance, at the expense of additional failover
mechanisms.

—Implementation Effort, Given Desired Features. It is much easier to build
one to run on a single node than it is to build a service to run on a peer-
to-peer network. Between these two extremes are services built to run on a
cluster at a single site, or across a small number of sites. The implementation
effort required for these various architectures depends on the type of service
implemented and its desired scalability and availability.

—Debugging Effort. Likewise, it is much easier to debug an application run-
ning on a single node than to debug one running on a peer-to-peer network.
Between these two extremes are services built to run on a cluster at a single
site or across a small number of sites. The implementation effort required
for these various architectures is application specific.

—Security. Peer-to-peer networks, whether installed in users’ homes or spread
across a large number of managed sites as in PlanetLab, store data on hun-
dreds or more nodes. Because of the wide distribution and federated manage-
ment of these nodes, it is likely easier for an attacker to compromise data in
a distributed implementation than it is when the service is deployed at fixed,
pre-authenticated data-centers. We discuss specific security issues related to
SWORD in Section 7.

Another challenge we overcame during our deployment of SWORD was keep-
ing the service running continuously on PlanetLab. We used the PlanetLab
application manager [Huebsch 2004] to automatically restart crashed SWORD
instances. It was important to disable this feature during debugging, however,
since in that setting a crashed application instance generally indicates a bug
that needs to be fixed. Automatic restart was a mixed blessing once we had de-
ployed the service in “production.” While it allowed SWORD to recover quickly
from node reboots, and allowed us to continue to provide service in the face
of bugs, it also hid transient bugs. Because periodically collecting logfiles from
hundreds of machines to look for restarts is time consuming and resource in-
tensive, a more sensible approach is to automatically email the service operator

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:35

the most recent logfile each time the application is restarted on a node. Restart
allows a service to handle failure gracefully, but care must be taken to notify
an operator and preserve forensic evidence when failures do occur, so that the
underlying bug can be fixed.

Finally, we note that when it comes to evaluating distributed applications,
PlanetLab offers several benefits as well as drawbacks compared to more tradi-
tional platforms such as fast network simulation3 and cluster-based emulation.
These trade-offs fall into the following categories.

—Scale. During our measurement period, PlanetLab consisted of about 500
physical nodes, about two-thirds of which were typically online and func-
tional at any one time. In contrast, cluster-based emulation typically allows
evaluation of applications with 10 or 20 “virtual nodes” per physical cluster
node; for example, when evaluating SWORD, we found that we could emulate
a network of about 1000 virtual nodes on 40 physical nodes before processor
contention, due to multiplexing many virtual nodes per physical machine,
began to affect our performance measurements. Simulation is arguably the
most scalable evaluation method. Unlike PlanetLab and emulation, it does
not run in real time, so an arbitrarily large system can be simulated if the ex-
perimenter is willing to wait long enough and is able to provision the machine
running the simulation with sufficient virtual memory.

—Network Topology and Link Characteristics. The PlanetLab network topol-
ogy is “hard-wired” based on the nodes that have elected to participate in
PlanetLab, but these network links reflect real-world latency, bandwidth
constraints, and packet-loss rates. In contrast, simulation allows the experi-
menter to create an arbitrary network topology, but fast network simulators
typically simulate only network latency, not bandwidth constraints or packet
loss. Emulation offers the best of both worlds, enabling the creation of arbi-
trary network topologies and emulation of user-defined latency, bandwidth,
and loss rate on each network link.

—Competition for Resources. Applications running on PlanetLab nodes are ex-
posed to contention from other applications for processor, memory, disk, and
network resources. Applications running in emulation can be subjected to
contention for these resources in a more controlled way. Fast network sim-
ulators, because they are network simulators and not processor or operat-
ing system simulators, cannot evaluate the application impact of contention
for node resources. Thus emulation, and to some extent PlanetLab deploy-
ment, are the best platforms for studying application sensitivity to resource
constraints.

—Workload. A key benefit of PlanetLab deployment is that applications can
be offered as a service to others, and thereby can be exposed to a real-user
workload. Of course, the challenge is in attracting enough users to the service
to meaningfully characterize typical usage. Our current SWORD deployment
has not yet met this criterion, but we hope that its integration with Plush,

3By “fast network simulation” we mean simulators such as p2psim [Li et al. 2005] or the simulator
distributed with Bamboo and Tapestry.

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:36 • J. Albrecht et al.

described in Section 3.3, will attract more users, thereby enabling us to draw
conclusions about what a typical SWORD query workload is. On the other
hand, we were able to use PlanetLab to derive a typical SWORD update
workload, by observing the node utilization data that SWORD measured
from Ganglia and other sources.

—Operator Actions. Because PlanetLab nodes are deployed across hundreds
of sites and operated by local site administrators and PlanetLab Central,
they are subjected to a realistic set of operator actions, some beneficial to
availability and/or performance, and some detrimental. However, users can-
not subject nodes to the full range of operator actions that they can in a
dedicated cluster environment, because they do not have access to the phys-
ical machine, nor root access to the underlying operating system.4 Finally,
operator actions cannot be realistically represented at all in a fast network
simulator, as neither the hardware nor operating system is simulated.

—Faults. Because PlanetLab nodes are deployed across hundreds of sites, they
are subjected to a realistic set of hardware, operating system, and opera-
tor faults. Furthermore, application deployers are free to inject application-
level faults of their choosing. However, because PlanetLab users do not have
access to the hardware or underlying operating system, they are limited
to injecting arbitrary faults into the application and virtualized operating-
system (vserver) layer of their system only. Emulation, because it runs in
a dedicated cluster environment, allows introduction of the full set of hard-
ware, operating system, and application-level faults. Simulation cannot re-
alistically reflect faults. In essence, the best a simulator can do is to map
all faults into a single fault, namely node disconnection from the simulated
network.

—Reproducibility. The large size of the error bars in our graphs in Figure 10
shows that one of the key drawbacks of PlanetLab experimentation is re-
producibility. Due to varying contention for processor, memory, network, and
disk I/O resources, performance varies significantly, even over short time
periods. This fact makes it difficult to use PlanetLab to ascertain the perfor-
mance impact of a design parameter by varying this parameter over multiple
runs, as many other factors will be varying across these runs that are out-
side of the experimenter’s control. In contrast, the controlled environments
of an emulation cluster and a simulator allow the same experiment to be re-
peated multiple times, with only the desired parameter(s) changing between
runs. We note that simulation is slightly more reproducible than emula-
tion because it allows a repeatably deterministic ordering of events, whereas
emulation allows events to become arbitrarily interleaved among different
nodes.

—Experiment Management. Deploying an application on a single-node simula-
tor is generally easy. Deploying an application on a cluster is slightly more

4Each PlanetLab slice (user) is given a Linux vserver [Linux VServer 2003] environment on each
machine, providing namespace isolation (for files, processes, and other entities) but not a true
virtual or physical machine. This allows users to perform some of their own operator actions on
PlanetLab, but not the full set possible on a truly dedicated machine.

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:37

difficult because code and data must be distributed to the cluster nodes, the
application must be started and stopped on the various nodes, and relevant
logfiles must be copied back to a central node if centralized analysis is de-
sired. The same steps must be taken to run an application on PlanetLab, but
with an additional twist: Nodes and network links may fail and recover dur-
ing the application’s deployment and operational phases. Tools that deploy
and monitor the application (not just the application itself) must therefore
handle failures gracefully. Moreover, to understand application behavior, ex-
perimenters must factor out those failures that occurred outside of their
control as the experiment ran.

Based on these observations, we conclude that PlanetLab evaluation comple-
ments, rather than replaces, traditional evaluation approaches. We believe that
in the future, it will be common for system developers to obtain the best of both
worlds, by deploying their system on PlanetLab to obtain traces and/or mod-
els of realistic workload, contention, and failures, and then using these traces
and/or models to drive simulation or emulation. In this study, we have started
along these lines in a small way by generating the SWORD update workload
for our experiments from a measurement trace taken from PlanetLab.

6. RELATED WORK

SWORD builds on work in resource discovery, Internet-scale query processing,
and distributed range search. In this section we discuss how SWORD compares
to related work in each of these areas.

6.1 Resource Discovery

Resource discovery has long been a research topic in the Grid community
[Czajkowski et al. 2001]. The most widely deployed Grid resource discovery sys-
tem is the Globus toolkit monitoring and discovery service (MDS2) [Zhang and
Schopf 2004]. MDS2 defines an architecture in which information providers pro-
vide raw measurement data, a Grid resource information service (GRIS) makes
the information available for querying, and a Grid index information service
(GIIS) aggregates data from GRISes. Globus provides an OpenLDAP-based
per-node GRIS and allows users to plug in their own GIIS implementations.
MDS2 data aggregation follows an administrator-specified hierarchical struc-
ture. SWORD’s query processor could be used as a GIIS, connecting GRISes in
a peer-to-peer fashion. MDS3 and MDS4 have recently emerged as successors
to MDS2, with similar goals.

Kee et al. describe virtual grids [Kee et al. 2005]. The description language
vgDL allows users to describe resource requirements as hierarchies of homo-
geneous or heterogeneous groups of nodes with good or poor connectivity. This
is reminiscent of SWORD’s groups with per-node, internode, and intergroup
constraints, but with coarser-grained specifications and support for arbitrar-
ily deep hierarchies. The resource mapping component vgFAB stores resource
measurements only in a centralized database, in contrast to SWORD, which
has the ability to store measurements in groups of central servers or in a DHT.

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:38 • J. Albrecht et al.

Also, vgFAB computes a bounded set of prefabricated groups and stores them
in the database, rather than dynamically forming them on a query-by-query
basis like SWORD.

Condor and its ClassAds language [Litzkow et al. 1988] provide similar func-
tionality to virtual grids and SWORD, absent the notion of groups and internode
connectivity constraints. Gang matching [Raman et al. 2003] extends Condor’s
original bilateral matching scheme to a multilateral one, allowing co-allocation
of multiple resources. Set matching [Liu et al. 2002] allows requests that ex-
press aggregate constraints. SWORD offers ClassAds as one of its query lan-
guages; this provides users the flexibility of ClassAds’ more general semantics
for ranking candidate nodes, but using this syntax users cannot specify intern-
ode or intergroup constraints or ranking functions. Redline [Liu and Foster
2004] formulates the matching problem as a constraint satisfaction problem.
These latter systems allow expression of resource groups, but they do not offer
a concise method to express network topologies. Also, to-date their implemen-
tations have been centralized.

XenoSearch [Spence and Harris 2003] supports DHT-based multi-attribute
range queries in a manner similar to our MultiQuery approach, but it uses a
separate DHT instance per attribute, creates its query routing structure ex-
plicitly rather than using built-in DHT successor pointers, and provides ap-
proximate answers using Bloom filters. Additionally, SWORD allows users to
define groups with internode and intergroup requirements and “penalty func-
tions” to rank nodes meeting the requirements. SWORD penalty functions are
a simple version of more general utility functions, which are well-studied com-
ponents in many resource management and allocation mechanisms. Though
utility functions are often discussed in the context of microeconomics and game
theory, Ferguson et al. [1996] and Ibaraki and Katoh [1988] provide a survey
of some earlier computer science research that focuses on utility functions in
resource allocation schemes.

Huang and Steenkiste [2003] describe a mechanism for network-sensitive
service selection. Their system addresses problems similar to the ones that
SWORD addresses, but using only centralized data collection and resource
mapping. They focus on finding single groups that meet target criteria for a
desired application, rather than on multiple groups with internode and inter-
group characteristics as SWORD does.

The network topology embedding problem is formulated as a constraint sat-
isfaction problem in Considine et al. [2003] for wide-area networks and as an
optimization problem in White et al. [2002] for cluster networks. Similar to
SWORD, the former system finds the best embedding of a user’s requested em-
ulated network topology within the graph of PlanetLab nodes, while the latter
maps a user’s requested emulated network topology to a set of physical cluster
resources that offer emulation capabilities.

PlaceLab [Chawathe et al. 2005] is a resource discovery service for locating
nearby WiFi hotspots. Organizations store a <latitude, longitude> tuple corre-
sponding to each hotspot they operate, and arbitrary users may also store such
location information when they discover a hotspot whose administrators have
not explicitly registered the hotspot with PlaceLab. Users wishing to locate a

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:39

hotspot near them may query PlaceLab with their current location, and the
infrastructure returns a list of nearby hotspots.

Other Internet technologies, including the service location protocol
(SLP) [SLP 1987], domain name system (DNS) [DNS 1987], and lightweight
directory access protocol (LDAP) [LDAP 1997], have been in use for many years
and have similar goals as SWORD. Specifically, SLP is a protocol that allows
applications to discover networked services without knowing the specific host-
name or IP address of the desired resource. Instead, applications simply de-
scribe the desired service and SLP finds URLs for the appropriate resources.
Jini [Jini 1998] is an example of a specific Java technology that provides this
service. DNS is an Internet technology that is used to translate alphabetic
domain names into IP addresses. This prevents users from having to remem-
ber IP addresses for resources they wish to access, since domain names like
“www.google.com” are easier to remember than strings of numbers. Similarly,
LDAP is a protocol that is used to access a directory that stores the location
of organizations, individuals, and other networked devices. Thus, a user who
wishes to access a particular resource uses LDAP to look up the resource in
a directory. Like SWORD, in all three of these instances, users benefit from
not needing to know all the information about all available resources ahead
of time.

6.2 Internet-Scale Query Processing

PIER [Huebsch et al. 2003], Sophia [Wawrzoniak et al. 2003], IrisNet [Nath
et al. 2003], and Astrolabe [van Renesse et al. 2003] provide Internet-scale
query processing. All four could be used to satisfy per-node resource queries,
and they offer a more expressive language for specifying such requirements
than does SWORD. However, the first three must contact all data-storing nodes
to perform range search and the last disseminates measurement data globally,
while SWORD targets its range search to only those nodes storing measure-
ments within the target attribute’s range. Also, SWORD provides a query lan-
guage and optimizer specialized for specifying and optimizing groups of nodes
with internode requirements and preferences. We note that PIER implements
an efficient distributed join primitive that SWORD does not, which could allow
faster processing of range queries over internode characteristics.

6.3 Distributed Range Search

DHT-based range search was suggested initially by Karger and Ruhl [2004],
using the technique of mapping values of an attribute to DHT keys. They also
suggested an item-balancing algorithm that reassigns node IDs so as to spread
load evenly among nodes in the face of a nonuniform workload, though at the
expense of path-length inflation. Mercury [Bharambe et al. 2004] extends this
work to multi-attribute queries using the concept of hubs, similar to our subre-
gions. They also describe a small-world-based routing overlay that restores log-
arithmic routing-path length. Mercury is evaluated primarily via simulation,
with a focus on routing efficiency and load balance. In contrast, SWORD focuses
on end-to-end performance and resource consumption, in emulation and a live

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:40 • J. Albrecht et al.

deployment, when multi-attribute range search is applied to resource discovery.
Additionally, we describe passive load-balancing that complements Mercury’s
active load-balancing.

Another recent proposal for distributed range search is the prefix hash
tree (PHT) [Ramabhadran et al. 2004]. PHT is designed to perform single-
dimensional range queries on top of DHTs while maintaining load balance.
PHT incrementally grows a trie, where each leaf corresponds to a range of
item identifiers that map to that DHT node responsible for the DHT key de-
fined by the path from the root of the trie to that leaf. The trie starts with
a singleton node, namely the root, and grows by incrementally splitting nodes
when they become overloaded. The PlaceLab mapping infrastructure described
earlier uses the PHT algorithm running atop OpenDHT [Rhea et al. 2005]. It
converts <latitude, longitude> tuples into a single-dimensional attribute using
a Z-curve linearization.

Researchers have also recently proposed distributed range search using
skip graphs [Aspnes and Shah 2003; Aspnes et al. 2004; Awerbuch and
Scheidler 2003], and using special-purpose data structures built on top of
CAN [Ratnasamy et al. 2001; Tang et al. 2003] and Chord [Stoica et al. 2001;
Gupta et al. 2003; Crainiceanu et al. 2004].

7. CONCLUSION AND FUTURE WORK

In this article we have described SWORD, a scalable resource discovery service
for wide-area distributed systems. SWORD users describe a requested system
topology in terms of groups with required intragroup, intergroup, and per-node
characteristics whose relative importance and sensitivity are expressed using
penalty functions. We explore a number of distributed and centralized query al-
gorithms for finding nodes meeting required per-node constraints, and several
heuristics for finding the best mapping of nodes to groups. Through emulation-
based evaluation, we find that an architecture based on 4-node server clusters
at network-peering facilities outperforms a DHT-based resource discovery in-
frastructure for all but the smallest number of sites.

Our experience with SWORD’s PlanetLab deployment shows that this DHT-
based approach performs reasonably well, despite competition from numerous
processor- and network-intensive applications sharing the same PlanetLab in-
frastructure nodes. While our results are specific to the system architectures
and workload configurations we examined, we believe that our experience con-
sidering both centralized and distributed architectures provides interesting
guidelines and insights regarding appropriate architectures for a variety of sys-
tems, depending on available resources, expected level of load, and required lev-
els of performance and availability. In operating a live deployment of SWORD
on PlanetLab for more than a year, we found that SWORD benefitted signifi-
cantly from the DHT’s self-healing properties but less from its scalability prop-
erties, due to the small size of the platform. As an evaluation platform, we
found that PlanetLab is an excellent addition to, but not a replacement for, em-
ulation. In particular, PlanetLab does not allow creation of arbitrary network
topologies or injection of node-level faults, and results on the platform are less

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:41

reproducible than those from emulation, due to unpredictable competition with
other PlanetLab users for node and network resources.

An important area of future work is security. Nodes could sign measurement
reports and queries as a form of authentication. Given an authentication in-
frastructure, per-node rate limiting could ensure that no node utilizes more
than a predefined amount of bandwidth (or optimizer CPU time) per unit time
on any single node. Such a technique is vulnerable to the Sybil attack [Douceur
2002] and therefore requires a trusted identity creation service. To ensure that
nodes are truthful in their measurement reports, a verification service could run
micro-benchmarks to verify that resource availability matches earlier adver-
tisements. To ensure that, modulo collusion, nodes are truthful when they run
the optimizer, a client might issue each query to several query nodes and com-
pare the results. Privacy is another challenging security issue for distributed
versions of SWORD. Reporting nodes could encrypt attribute names to hide
their meanings, but our range-search mechanism relies on a monotonic map-
ping function from measured values to DHT keys. Moreover, encrypting values
using standard techniques, either before or after mapping them to a DHT key,
will break this monotonicity.

Finally, we have not yet studied the system dynamics that result from mul-
tiple large-scale applications periodically querying SWORD to determine when
and how to migrate application instances. We anticipate that mechanisms are
needed to dampen potential oscillations. Further, providing support for more
complex penalty functions is another extension we hope to explore in the future.

More information on SWORD, including the PlanetLab deployment, can be
accessed at http://www.swordrd.org/.

REFERENCES

ALBRECHT, J., TUTTLE, C., SNOEREN, A. C., AND VAHDAT, A. 2006. PlanetLab application management
using Plush. SIGOPS Oper. Syst. Rev. 40, 1, 33–40.

ASPNES, J., KIRSCH, J., AND KRISHNAMURTHY, A. 2004. Load balancing and locality in range-queriable
data structures. In Proceedings of the Annual ACM SIGOPS Symposium on Principles of Dis-
tributed Computing (PODC).

ASPNES, J. AND SHAH, G. 2003. Skip graphs. In Proceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA).

AUYOUNG, A., CHUN, B. N., SNOEREN, A. C., AND VAHDAT, A. 2004. Resource allocation in federated
distributed computing infrastructures. In Proceedings of the Symposium on Reliable Infrastruc-
tures for XML (OASIS).

AWERBUCH, B. AND SCHEIDLER, C. 2003. Peer-to-Peer systems for prefix search. In Proceedings of
the Annual ACM SIGOPS Symposium on Principles of Distributed Computing (PODC).

BALAZINSKA, M., BALAKRISHNAN, H., AND KARGER, D. 2002. INS/Twine: A scalable peer-to-peer archi-
tecture for intentional resource discovery. In Proceedings of the IEEE International Conference
on Program Comprehension (ICPC).

BAVIER, A., BOWMAN, M., CHUN, B., CULLER, D., KARLIN, S., MUIR, S., PETERSON, L., ROSCOE, T., SPALINK, T.,
AND WAWRZONIAK, M. 2004. Operating systems support for planetary-scale network services. In
Proceedings of the ACM Symposium on Networked Systems Design and Implementation (NSDI).

BHARAMBE, A., AGRAWAL, M., AND SESHAN, S. 2004. Mercury: Supporting scalable multi-attribute
range queries. In Proceedings of the ACM SIGCOMM Data Communications Conference.

CHANG, H., GOVINDAN, R., JAMIN, S., SHENKER, S., AND WILLINGER, W. 2002. Towards capturing repre-
sentative AS-level Internet topologies. In Proceedings of the ACM Joint International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS).

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:42 • J. Albrecht et al.

CHAWATHE, Y., RAMABHADRAN, S., RATNASAMY, S., LAMARCA, A., SHENKER, S., AND HELLERSTEIN, J. 2005.
A case study in building layered DHT applications. In Proceedings of the ACM SIGCOMM Data
Communications Conference.

CHEN, Y., BINDEL, D., SONG, H., AND KATZ, R. 2004. An algebraic approach to practical and scal-
able overlay network monitoring. In Proceedings of the ACM SIGCOMM Data Communications
Conference.

CHUN, B. 2008. Slicestat. http://berkeley.intel-research.net/bnc/slicestat/.
CONSIDINE, J., BYERS, J., AND MAYER-PATEL, K. 2003. A constraint satisfication approach to testbed

embedding services. In Proceedings of the Workshop on Hot Topics in Network (HotNets).
CRAINICEANU, A., LINGA, P., GEHRKE, J., AND SHANMUGASUNDARAM, J. 2004. Querying peer-to-peer

networks using P-trees. In Proceedings of the International Workshop on Web and Databases
(WebDB).

CZAJKOWSKI, K., FITZGERALD, S., FOSTER, I., AND KESSELMAN, C. 2001. Grid information services
for distributed resource sharing. In Proceedings of the IEEE International Symposium on High
Performance Distributed Computing (HPDC).

CZAJKOWSKI, K., FOSTER, I., KESSELMAN, C., SANDER, V., AND TUECKE, S. 2002. SNAP: A protocol
for negotiating service level agreements and coordinating resource management in distributed
systems. In Proceedings of the 8th Workshop on Job Scheduling Strategies for Parallel Processing.
Lecture Notes in Computer Science, vol. 2537. Springer, 153–183.

DABEK, F., COX, R., KAAHOEK, F., AND MORRIS, R. 2004. Vivaldi: A decentralized network coordinate
system. In Proceedings of the ACM SIGCOMM Data Communications Conference.

DABEK, F., ZHAO, B., DRUSCHEL, P., KUBIATOWICZ, J., AND STOICA, I. 2003. Towards a common API for
structured P2P overlays. In Proceedings of the International Workshop on Peer-to-Peer Systems
(IPTPS).

DNS 1987. Domain names-implementation and specification. http://www.ietf.org/rfc/rfc1035.
txt.

DOUCEUR, J. R. 2002. The Sybil attack. In Proceedings of the International Workshop on Peer-to-
Peer Systems (IPTPS).

FERGUSON, D., NIKOLAOU, C., SAIRAMESH, J., AND YEMINI, Y. 1996. Economic Models for Allocating
Resources in Computer Systems. World Scientific (Scott Clearwater, Ed.).

FOSTER, I. AND KESSELMAN, C. 2003. The Grid 2. Morgan Kaufmann.
FOSTER, I., KESSELMAN, C., AND TUECKE, S. 2001. The anatomy of the grid: Enabling scalable virtual

organizations. Int. J. High Perform. Comput. Appl. 15, 3, 200–222.
FU, Y., CHASE, J., CHUN, B., SCHWAB, S., AND VAHDAT, A. 2003. SHARP: An architecture for secure

resource peering. In Proceedings of the SIGOPS Symposium on Operating Systems Principles
(SOSP).

GUPTA, A., AGRAWAL, D., AND ABBAD, A. E. 2003. Approximate range selection queries in peer-to-
peer systems. In Proceedings of the Conference on Innovative Data Systems Research (CIDR).

HUANG, A. AND STEENKISTE, P. 2003. Network-Sensitive service discovery. In Proceedings of the
USENIX Symposium on Internet Technologies and Systems (USITS).

HUEBSCH, R. 2004. PlaneTlab application manager. http://appmanager.berkeley.intel-
research.net/.

HUEBSCH, R., HELLERSTEIN, J. M., BOON, N. L., LOO, T., SHENKER, S., AND STOICA, I. 2003. Querying
the Internet with PIER. In Proceedings of the International Conference on Very Large Databases
(VLDB).

IBARAKI, T. AND KATOH, N. 1988. Resource Allocation Problems: Algorithmic Approaches. MIT
Press, Cambridge, MA.

JAGADISH, H. V. 1990. Linear clustering of objects with multiple attributes. In Proceedings of the
ACM SIGMOD International Conference on Management of Data.

JINI. 1998. Jini homepage. http://java.sun.com/products/jini.
KARGER, D. AND RUHL, M. 2004. Simple efficient load balancing algorithms for peer-to-peer sys-

tems. In Proceedings of the International Workshop on Peer-to-Peer Systems (IPTPS).
KAZAA. 2001. Kazaa homepage. http://www.kazaa.com/us/index.htm.
KEE, Y.-S., LOGOTHETIS, D., HUANG, R., CASANOVA, H., AND CHIEN, A. 2005. Efficient resource de-

scription and high quality selection for virtual grids. In Proceedings of the IEEE International
Symposium on Cluster Computing and the Gird (CCGrid).

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

Design and Implementation Trade-Offs for Wide-Area Resource Discovery • 18:43

KRISHNAMURTHY, B. AND WANG, J. 2000. On network-aware clustering of Web clients. In Proceedings
of the ACM SIGCOMM Data Communications Conference.

LDAP 1997. LDAP homepage. http://www.ietf.org/rfc/rfc2251.txt.
LI, J., STRIBLING, J., MORRIS, R., KAASHOEK, M. F., AND GIL, T. M. 2005. A performance vs. cost

framework for evaluating DHT design tradeoffs under churn. In Proceedings of the Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM).

LINUX VSERVER. 2003. VServer homepage. http://linux-vserver.org/.
LITZKOW, M., LIVNY, M., AND MUTKA, M. 1988. Condor–A hunter of idle workstations. In Proceedings

of the IEEE International Conference on Distributed Computing Systems (ICDCS).
LIU, C. AND FOSTER, I. 2004. A constraint language approach to matchmaking. In Proceedings of

the IEEE International Workshop on Research Issues in Data Engineering (RIDE).
LIU, C., YANG, L., FOSTER, I., AND ANGULO, D. 2002. Design and evaluation of a resource selection

framework. In Proceedings of the International Symposium on High Performance Distributed
Computing (HPDC).

MASSIE, M., CHUN, B., AND CULLER, D. 2004. The Ganglia distributed monitoring system: Design,
implementation, and experience. Parallel Comput. 30, 7 (Jul.).

NATH, S., KE, Y., GIBBONS, P. B., KARP, B., AND SESHAN, S. 2003. IrisNet: An architecture for en-
abling sensor-enriched Internet services. Tech. Rep. IRP-TR-03-04, Intel Research, Pittsburgh,
Pennsylvania. June.

NG, T. S. E. AND ZHANG, H. 2002. Predicting Internet network distance with coordinates-based
approaches. In Proceedings of the Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM).

NG, T. S. E. AND ZHANG, H. 2004. A network positioning system for the Internet. In Proceedings
of the USENIX Annual Technical Conference (USENIX ATC).

OPPENHEIMER, D., CHUN, B., PATTERSON, D., SNOEREN, A. C., AND VAHDAT, A. 2006. Service place-
ment in shared wide-area platforms. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC).

PAI, V. 2008. CoTop: A slice-based top for PlanetLab. http://codeen.cs.princeton.edu/cotop/.
PAI, V. S., WANG, L., PARK, K., PANG, R., AND PETERSON, L. 2003. The dark side of the Web: An open

proxy’s view. In Proceedings of the Workshop on Hot Topics in Networks (HotNets).
RAMABHADRAN, S., RATNASAMY, S., HELLERSTEIN, J. M., AND SHENKER, S. 2004. Prefix hash tree. In

Proceedings of the Annual ACM SIGOPS Symposium on Principles of Distributed Computing
(PODC).

RAMAN, R., LIVNY, M., AND SOLOMON, M. 1998. Matchmaking: Distributed resource management
for high throughput computing. In Proceedings of the IEEE International Symposium on High
Performance Distributed Computing (HPDC).

RAMAN, R., LIVNY, M., AND SOLOMON, M. 2003. Policy driven heterogeneous resource co-allocation
with gangmatching. In Proceedings of the IEEE International Symposium on High Performance
Distributed Computing (HPDC).

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. 2001. A content addressable
network. In Proceedings of the ACM SIGCOMM Data Communications Conference.

RED HERRING MAGAZINE. 2004. Distributed computing: We come in peace. Red Herring Mag. (Aug.).
REYNOLDS, P. AND VAHDAT, A. 2003. Efficient peer-to-peer keyword searching. In Proceedings of the

ACM/IFIP/USENIX International Middleware Conference.
RHEA, S., CHUN, B.-G., KUBIATOWICZ, J., AND SHENKER, S. 2005. Fixing the embarrassing slowness

of OpenDHT on PlanetLab. In Proceedings of the Conference on Real, Large Distributed Systems
(WORLDS).

RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ, J. 2004. Handling churn in a DHT. In Proceed-
ings of the USENIX Annual Technical Conference (USENIX ATC).

RHEA, S., GODFREY, B., KARP, B., KUBIATOWICZ, J., RATNASAMY, S., SHENKER, S., STOICA, I., AND YU, H.
2005. OpenDHT: A public DHT service and its uses. In Proceedings of the ACM SIGCOMM
Data Communications Conference.

SLP. 1987. SLP. http://www.ietf.org/rfc/rfc2165.txt.
SPENCE, D. AND HARRIS, T. 2003. XenoSearch: Distributed resource discovery in the XenoServer

open platform. In Proceedings of the IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC).

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

18:44 • J. Albrecht et al.

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H. 2001. Chord: A scalable
peer-to-peer lookup service for Internet applications. In Proceedings of the ACM SIGCOMM Data
Communications Conference.

TANG, C. AND DWARKADAS, S. 2004. Hybrid global-local indexing for efficient peer-to-peer infor-
mation retrieval. In Proceedings of the ACM Symposium on Networked Systems Design and
Implementation (NSDI).

TANG, C., XU, Z., AND MAHALINGAM, M. 2003. pSearch: Information retrieval in structured overlays.
ACM SIGCOMM Comput. Commun. Rev. 33, 1, 89–94.

VAHDAT, A., YOCUM, K., WALSH, K., MAHADEVAN, P., KOSTIĆ, D., CHASE, J., AND BECKER, D. 2002. Scal-
ability and accuracy in a large-scale network emulator. In Proceedings of the ACM USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

VAN RENESSE, R., BIRMAN, K., AND VOGELS, W. 2003. Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data mining. ACM Trans. Comput. Syst. 21, 2,
164–206.

WAWRZONIAK, M., PETERSON, L., AND ROSCOE, T. 2003. Sophia: An information plane for networked
systems. In Proceedings of the Workshop on Hot Topics in Networking (HotNets).

WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GURUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C.,
AND JOGLEKAR, A. 2002. An integrated experimental environment for distributed systems and
networks. In Proceedings of the ACM USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

ZHANG, X. AND SCHOPF, J. 2004. Performance Analysis of the Globus toolkit monitoring and dis-
covery service, MDS2. In Proceedings of the International Workshop on Middleware Performance
(MP).

Received November 2005; revised May 2006; accepted December 2006

ACM Transactions on Internet Technology, Vol. 8, No. 4, Article 18, Publication date: September 2008.

