Exploring Voice Over IP with Java in an Upper
Division Networking Course

Jeannie R. Albrecht, s412270@gettysburg.edu
Rodney S. Tosten, rtosten@gettysburg.edu
Gettysburg College & CNAYV Systems, Inc.

Gettysburg, PA 17325
(717) 337-6630

ABSTRACT

This paper introduces the concepts needed
to implement Voice over IP applications with Java.
Topics covered include Session Initiation Protocol,
Real Time Protocol, Java Media Framework, and the
development of an Internet-based netphone. It also
discusses techniques for incorporating these subjects
into an upper division Networking course in an
undergraduate curriculum.

Keywords: Voice over IP, Session Initiation Protocol,
Real Time Protocol, Networking, Java Media
Framework

1. INTRODUCTION

Communication has been a fundamental
aspect of society since the birth of the first
civilizations. People have always had a need to
send and receive information in various forms.
As technology continues to spread to all corners
of the world, the demand for quick and reliable
communication, anywhere, anytime, and with
any device is constantly increasing.

The invention of the Internet, or perhaps
more importantly, the growing popularity of the
World Wide Web, has already redefined the way
people communicate and keep in touch with one
another. Internet applications such as email and
AOL’s Instant Messenger offer simple, reliable,
and inexpensive ways to interact with friends
and family members from any personal
computer. These technologies provide users
with text messaging capabilities, which
essentially are alternatives to letter writing and
mailing items via the postal service.

The next logical step is to redefine voice
communication. In the past, voice messaging
over the Internet has been unreliable and of poor

quality due to limitations in hardware. However
in recent years, personal computer hardware
specifications and network bandwidth capacities
have increased significantly, making high
quality audio and video streaming over the
Internet possible.

One very popular area of development
on the Internet today is a specific type of audio
streaming, commonly called Voice over IP
(VoIP). Applications implementing VoIP allow
users to physically talk to each other over the
Internet using only their computer’s microphone
and speakers. Many other protocols have aided
in the development of these applications,
including Session Initiation Protocol (SIP) and
Real Time Protocol (RTP).  VoIP based
technologies, like Internet telephones called
netphones, will continue to play a large role in
the future of computing, and therefore also in
computer science education. VolIP, SIP, and
RTP incorporate concepts taught in an
undergraduate Networking course. Thus, we
believe that VoIP should be featured in a
computer science curriculum.

2. WHAT IS SIP?

Jonathan Rosenberg and Henning
Schulzrinne first developed SIP, which is
formally defined in RFC 2543, at Columbia
University in the late 1990s [2]. SIP is an
application-layer control protocol for creating,
modifying, and terminating sessions. These
sessions include Internet multimedia
conferences, Internet telephone calls, and
multimedia distribution. Designed to be
independent of lower layer protocols, it can be



implemented using either TCP or UDP at the
transport layer.

SIP essentially handles the initial “hand
shaking” that must occur between two parties
prior to engaging in any kind of communication.
The benefit of using SIP in VoIP applications is
that it keeps track of all registered users’
locations and current contact information,
including email addresses, telephone numbers,
and cellular phone numbers. Thus the VolP
application only needs to know who to call
instead of where to locate them. SIP’s basic
philosophy is “Find me, follow me.” This
means that as a user’s location changes, or as a
particular method for communication becomes
unavailable for various reasons, SIP records the
new information. Therefore, when one user
needs to contact another, SIP knows exactly
where and how to direct the call.

3. USING SIP

Although many companies now offer
SIP enhanced hardware and software solutions,
one of the leading software providers is a New
Jersey based company called dynamicsoft
(http://www.dynamicsoft.com). The chief
scientist at dynamicsoft is Jonathan Rosenberg,
and during the past few years the company has
been very active in the production of
commercially available SIP software
development packages.

Three  components  involved in
dynamicsoft’s software are the User Agent,
Location Server, and Proxy Server. Each
element has a specific role in the implementation
of SIP. The details of each of these parts are
described in the following paragraphs.

3.1 User Agent

The User Agent is the part of the
software that the user actually sees. A sample
version of a User Agent is available for
downloading from dynamicsoft in either Java or
C++. All of the typical actions associated with a
phone call are defined within methods in the
User Agent. These include functions like call,
hang-up, and answer. The User Agent is also
the section that gives developers the most
freedom to make their software as flexible and

robust as desired. There are three levels of
development available from dynamicsoft,
namely High, Mid, and Low, allowing
programmers to choose how much control they
have. High level coding hides a lot of the
technical connection details involved with SIP
applications, however it has somewhat limited
functionality overall. Low level coding forces
programmers to handle most technical details
specifically, but offers more control and power.
Mid level coding is a compromise between the
other two levels.

3.2 Location Server

The Location Server’s role is to keep
track of users’ locations at all times. Location in
this sense is not so much a physical place, but
rather a communication address, such as an
email address, telephone number, or cellular
phone number. It basically is a table in a
database that contains all valid users, their
locations at any given time, and how long they
will be at the specified location. As a user
moves from place to place, or more accurately,
from one location to another, the table is updated
accordingly. If a user attends an important
meeting, for example, and can no longer be
reached via a telephone, the location server
would be informed of the change, and an email
address would become the new location for that
user. When the meeting ends, the user would
reregister their telephone number with the
Location Server, updating their location once
again.

3.3 Proxy Server

The Proxy Server is the component that
acts as the connection between the Location
Server and the User Agent. It handles requests
from the User Agent, such as registrations or call
initiations, and retrieves the needed information
from the Location Server. To perform these
functions, SQL queries and responses are used
to execute the appropriate actions in the
database. When initiating a call, all stages of the
connection hand shaking also go through the
Proxy Server. In some sense, the Proxy Server
acts as a liaison between the two parties in the
call until the call is completed.



3.4 Registration

Before placing or receiving any calls,
users must register with the Location Server. To
complete a registration, the User Agent notifies
the Proxy Server that it needs to register. The
Proxy Server sends a registration request (Figure
1) to the Location Server, who sends a message
back to the Proxy Server when the action is
complete. The Proxy Server then gives the User
Agent the permission to participate in calls.

*** SENDING *** - to: /138.161.234.11/5060 via UDP

REGISTER sip:rod@gettysburg.edu:5060 SIP/2.0

Via: SIP/2.0/UDP 138.161.234.11:7300

From: <sip:rod@138.161.234.11>;
tag=c0-a8-2-42-b2411169-fc00

To: sip:rod@gettysburg.edu

Call-ID: 953072942080@138.161.234.11

CSeq: 15608 REGISTER

Contact: <sip:rod-pc@gateway.com>; expires=30000

Figure 1 — Registration.

3.4 Typical Call Flow

Once a user is registered with the
Location Server, that user has the ability to make
and receive calls to and from other registered
users. To place a call, the caller simply specifies
the name of the callee (user being called) in the
User Agent. The caller’s User Agent contacts
the Proxy Server, and the Proxy Server attempts
to find the callee in the Location Server. If the
callee is found, an invite message generated by
the User Agent is sent to the callee. Once the
callee accepts the incoming call, a “200 OK”
response is sent back to the caller. The SIP
software’s job is complete (Figure 2) [2].

Placing a Call... /
S @4@&; 7
&
P
Q
s
Caller Invite Tnvite Callee
100 Trying
180 Ringing 180 Ringing
200 OK 200 OK
ACK ACK

Figure 2 - SIP Call Flow.

4. WHAT IS RTP?

RTP is a protocol that provides end-to-
end delivery services for data with real-time
characteristics. Formally defined in RFC 1889,
RTP is most often used when working with
interactive audio and video on the Internet. One
important feature of the protocol is that it does
not guarantee quality-of-service to any degree.
Reliability and quality are beyond the realm of
the protocol’s specifications. Applications that
implement RTP rely on lower layer services,
such as TCP or UDP, to handle these issues.

For most real time streaming, UDP is
the transport protocol that produces the best
results. Although UDP is unreliable in that it
does not ensure the successful delivery of
packets, it is relatively quick. This is very
important when streaming media over the
Internet because there needs to be a constant
stream of data being transmitted. With more
reliable but slower transport protocols, like TCP,
lost packets are retransmitted, which leads to
congestion and pauses in transmission. Using
UDP, an occasional lost packet may cause a
short break in the sound. However, with TCP,
waiting for packets to be retransmitted every
time one is lost creates long pauses that severely
decrease the quality of the transmission. UDP is
clearly a better choice in this situation.

There are many issues that developers
must consider when working with RTP based
programs. Currently, the Internet cannot yet
fully support the high demand for real-time
applications.  High-bandwidth services using
RTP, such as audio and video conferencing,
have the potential to seriously degrade the
quality-of-service of other network services if
used excessively. Severe congestion and other
problems result when all of the available
bandwidth on a given network is being used for
media streaming. In these cases there is no
bandwidth left to fulfill the simpler requests,
such as email retrieval or web surfing.
Programmers must take precautions to limit
excessive and accidental bandwidth usage.



5. JAVA MEDIA FRAMEWORK

In response to the growing popularity of
RTP and VolIP applications, Sun released a new
technology that enables audio, video, and other
time-based media to be added to Java applets
and applications [4]. This new package is called
Java Media Framework (JMF), and it acts as an
extension to the standard Java Development Kit.
JMF has the ability to capture, playback,
transmit, encode, and decode multiple media
formats. It makes the implementation of RTP
much simpler, hiding many of the technical
details from Java developers.

When dealing with audio and video
streaming, it is necessary to compress and
decompress the data in multiple formats. Any
technology that performs this type of
compression and decompression is called a
codec. In VolIP telephony, G.711, which is also
called ULAW, is the most popular and widely
accepted codec. Another popular codec that is
more frequently seen in the compression of
sound and music files is MPEG. Fortunately,
JMF offers support for both of these formats.
Various code samples demonstrating the more
common uses of JMF can be found on Sun’s
website.

6. CNAYV SOFTPHONE

After learning about SIP, RTP, and
JMF, which are all topics that fit easily into a
Java based Networks course, students have the
knowledge needed to begin creating their own
VoIP applets and applications. The netphone
project described in the following paragraphs
incorporates all of these technologies into one
Java applet. However due to its complexity, it
probably would be more appropriate as a final
project rather than a weekly assignment. The
netphone, dubbed the “CNAV Softphone,” is a
project that started as a summer internship at a
software development company called CNAV
Systems (http://www.cnavsystems.com). The
Softphone was designed to be part of an Internet
based college portal system. Its purpose is to
give campus members the ability to contact one
another anytime, anywhere, and from any
computer or telephone.

The CNAV Softphone (Figure 3) is a
Java applet that runs within a web-based portal.
Upon logging into the portal, the Softphone
automatically registers with the Location Server
and updates the contact information for that
user. At this point, if the user wishes to place a
call, they simply type the callee’s name into the
appropriate text field on the applet, choose either
text or voice call, and wait for the callee to
accept their invitation. If a voice call is chosen,
a JMF process is started that captures and
transmits the voices of the caller and callee. For
text messaging, Java TCP Sockets and
ServerSockets are used to allow instant
messaging capabilities between the two parties.
Once the call is complete, the user clicks hang-
up, and all streams and sockets are closed. The
user is now free to participate in another call.

& CNAV Softphone

CNAYV Softphone
Port (3060 is defaut) FD-ED— Register

MyPhone Address;  [compname|

Callee's Address |EmEHhE callee's address here.

Place Yoice Call | Flace Tedt Call | Acceptvoice AccemTextl ~Hangup I

|ju must register hefore placing any calls. =
4 ¥

PostMessage
Type messages here and press Post Message
] =
Messages will be displayed here =
14 J_I
Hide Window

Figure 3 — CNAY Softphone.

6.1 Voice Messaging

JMF handles all of the voice messaging
in the CNAV Softphone. Once SIP finds the
callee’s address and gets the call underway, JMF
takes over to provide real-time voice streaming
over the Internet. In order to transmit
successfully, the caller and callee’s IP addresses
and two available ports on each machine are
needed. One port will be used for sending data,
while the other is used for receiving data. JMF
captures the users’ voices directly from their
microphones, and using the codec specified,
compresses the data in the appropriate format.



Several different formats have been explored for
use in the Softphone, however MPEG
consistently performed the best. G.711 also
worked fairly well, although in terms of voice
quality, MPEG was undoubtedly superior. JMF
then transmits the compressed data to the
callee’s machine using their IP address and port
number. Upon receiving the data on the callee’s
end of the connection, JMF decompresses it, and
plays it through the computer’s speakers.

6.2 Text Messaging

Test Messaging in the CNAV Softphone
is implemented using the Java Socket and
ServerSocket classes. When a caller initiates a
text call, a ServerSocket is created that waits for
clients to connect to it. If the callee accepts the
invitation, a Socket connection is made to the
caller. Two streams are needed to handle the
data flow in both directions. To exchange
messages, the users type in the text boxes within
the Softphone and choose send. The typed text
is put on the stream where it is immediately
retrieved from the other party and displayed in
the lower text box in the Softphone. This
communication continues until one of the users
end the call. Once the call is complete, all
streams and Sockets are flushed and closed.

6.3 Voice-Text Negotiation

From a programmer’s prospective,
perhaps one of the most interesting aspects of
this Softphone is the way in which voice-text
negotiation takes place. Here the programmer
has the freedom to create a new protocol
defining the standards of communication in the
Softphone. The main concern in this situation is
that a conflict of interest arises when the caller
and callee do not agree on the type of call. If the
caller requests voice, for example, but the callee
accepts only text, the Softphone must decide
how to solve this problem before the call can be
connected.

One solution is to always honor the
caller’s request. Since the caller was the one
who initiated the call, they should get
precedence over the callee. Therefore, if a caller
requests a voice call, regardless of whether the
callee accepts voice or text, the voice call will
take place. Similarly, if the caller requests text
only, as long as the callee accepts either a voice

or text call, the text call will be completed. The
problem with this solution though is that it
assumes that a microphone and speakers are
available to both the caller and callee at all
times. It is important to realize the weaknesses
of this particular solution. Consider the case
where a callee does not have access to a
microphone when a caller initiates a voice call.
With this solution the call would supposedly
take place anyway. There must be a better way
to handle the problem.

A modified version of this solution
involves assigning text messaging a higher
priority than voice messaging. This makes more
sense because text messaging does not require
any extra hardware like microphones or
speakers. The only needed hardware is a
keyboard for typing. If this modified protocol
for voice-text negotiation is used, the only way
two users can engage in a voice call is if both
parties agree to accept voice. This solution
solves many of the problems that the first
solution encountered, and is a better protocol for
most situations.

6.4 Applet Security

When working with applets that capture
from microphones connected to personal
computers, there are several potential security
loopholes that arise and must be taken into
consideration during development. For
example, consider the case where two users
engage in a voice call. The conversation ends,
and both parties walk away from their
computers. However due to a flaw in the
software, the connection is accidentally left open
from the callee to the caller, and the microphone
continues to capture and transmit to the caller’s
computer. Some time later, the caller returns to
their computer and realizes that they can hear
the conversation that is taking place in the
callee’s room. However the callee cannot hear
the caller, and hence has no way of knowing
what is happening. The caller’s Softphone has
essentially bugged the callee’s room.

In order to allow applets to capture from
microphones, each user must specify this
privilege in their java.properties file. Every
machine that runs Java has this file in their
system. By allowing applets to capture, users
are making themselves vulnerable to some



serious invasions of their privacy. Thus as a
developer of VolP applets, it is essential that all
connections are successfully closed.

6.5 Possible Project Extensions

Once the student finishes the project, if
they want to continue working with VoIP
applications there are a variety of extensions to
the Softphone that involve new and challenging
technologies. One such possibility is making the
Softphone work with an IP phone. There are a
few vendors that make IP phones currently, and
one of the more popular ones is a company
called Pingtel (http://www.pingtel.com). Pingtel
phones are essentially regular telephones that
plug directly into an Ethernet connection. They
have an IP address that can be used from the
Softphone to complete calls. Pingtel phones can
be programmed using Java, and they also come
with a built-in SIP stack for performing SIP
functions.

Yet another extension to the Softphone
is to make it work with regular telephones
connected to the Plain Old Telephone System
(POTS) or Public Switched Telephone Network
(PSTN). This requires the developer to purchase
a router that plugs into an Ethernet connection,
and allows regular telephones to plug into it.
Several versions of this type of router are
available from companies like Cisco, however
they tend to be rather expensive. The router
basically assigns every telephone connected to it
an IP address, so that calls can be made to and
from the Softphone.

7. VoIP IN THE CLASSROOM

Traditional networking courses cover
popular topics such as TCP, HTTP, and Internet
application construction. Topics such as
multicasting, UDP, and databases are usually
forgotten.

In the spring semester of 2001, we
introduced the CNAV Softphone project in the
networking course at Gettysburg College.
Since the Softphone incorporates many different
network technologies, it was an ideal case study
to present various network concepts working
together in one system.

The first concept is the use of UDP as
the primary communication transport. ~With
TCP dominating the Internet and Internet
applications, the focus on UDP gives students a
different  perspective of communication
methods. UDP is used as both a session medium
and as a communication transport in the
Softphone.

To demonstrate the use of UDP,
students study the packets from a snoop session
between two Internet phones. The packets first
demonstrate the use of the SIP protocol using
UDP. Students examine the packets in ASCII
and hexadecimal format, and see the headers of
the packets where handshaking information is
stored. Once the session is initiated, students
view the RTP packets containing the G.711
encoding of voice signals. This allows them to
analyze the hexadecimal representation of voice
packets.

The last concept to cover is the
handshaking between two Softphones. More
times than not, students only study existing
protocols.  In this project, a handshaking
protocol has to be developed. Here students
must address the issues revolving around the
hardware and user preferences.

8. REFLECTIONS

As the main student programmer of the
CNAYV Softphone previously described, I found
the project exciting, challenging, and sometimes
frustrating. It was fun to work with these
popular, innovative  VoIP  technologies.
However, like most new technologies, the
documentation available was somewhat lacking
and inaccurate. Even some of the sample code |
downloaded initially did not work properly. But
once | got past these issues, I really enjoyed the
programming. It was difficult at times, but
never overwhelming.  Also, it was very
rewarding to successfully complete my first call
with the Softphone. The words “I can hear you,
can you hear me?” never sounded as good as
they did that day! I would definitely
recommend this project to other Networking
students.
—Jeannie Albrecht



9. SUMMARY

As the hardware specifications of
personal computers and bandwidth capacities of
networks continue to increase in the upcoming
years, there will be a greater demand for reliable
VoIP applications. Protocols such as SIP and
RTP, in addition to programming technologies
like JMF, offer many new options for
developers.  Students enjoy learning about
media-based applications such as the CNAV
Softphone, and projects such as this offer them
an opportunity to apply concepts taught in
undergraduate Networking courses.

10. ACKNOWLEDGEMENTS

The authors express their appreciation to
Gettysburg College and CNAV Systems for
partially funding this project. In addition, we
appreciate the review comments from David
Athey at CNAV Systems.

11. REFERENCES

[1] DeCarmo, Linden. Core Java Media
Framework. Prentice Hall, 1999.

[2] dynamicsoft SIP Software Documentation
(included on CD with software).
http://dynamicsoft.com

[3] Horstmann, Cay and Gary Cornell. Core
Java 2, Volume 1: Fundamentals. Sun
Microsystems Press. 1999.

[4] Java Media Framework API Documentation
http://java.sun.com/products/
java-media/jmf/index.html

[5] Java 2 Platform, Standard Edition, v 1.3 API
Specification
http://java.sun.com/j2se/1.3/docs/api/index.html



