
Bringing Big Systems to Small Schools: Distributed
Systems for Undergraduates ∗

Jeannie R. Albrecht
Williams College

Williamstown, MA 01267
jeannie@cs.williams.edu

ABSTRACT
Distributed applications have become a core component of
the Internet’s infrastructure. However, many undergraduate
curriculums, especially at small colleges, do not offer courses
that focus on the design and implementation of distributed
systems. The courses that are offered address the theoretical
aspects of system design, but often fail to provide students
with the opportunity to develop and evaluate distributed
applications in real-world environments. As a result, un-
dergraduate students are not as prepared as they should
be for graduate study or careers in industry. This paper
describes an undergraduate course in Distributed Systems
that not only studies the key design principles of distributed
systems, but also has a unique emphasis on giving students
hands-on access to distributed systems through the use of
shared computing testbeds, such as PlanetLab and GENI,
and open-source technologies, such as Xen and Hadoop. Us-
ing these platforms, students can perform large-scale, dis-
tributed experimentation even at small colleges.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
K.3.2 [Computer and Information Science Educa-
tion]: Computer Science Education

General Terms
Design, Experimentation

Keywords
Distributed Systems, PlanetLab, Undergraduate Education

1. INTRODUCTION
As the number of Internet users continues to rise, Internet-

based companies, such as Google, Amazon, and Yahoo, are

∗This material is supported by the NSF grant CNS-0834243.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

leveraging the aggregate computing power of distributed sys-
tems to satisfy the demands of their users. In general terms,
distributed systems are collections of independent networked
computers that function as single coherent systems. These
systems offer many advantages over non-distributed systems
and applications, such as enhanced performance and bet-
ter resilience to failure. However, in addition to the ad-
vantages of distributed systems, they also introduce many
new challenges to developers. Configuring and maintaining
a distributed set of computers for hosting an application is a
tedious task. Detecting and recovering from bugs in applica-
tions that are running on hundreds of machines worldwide is
much more challenging than debugging code locally. These
challenges are overwhelming to developers without prior pro-
gramming experience in distributed environments.

Since distributed computing is quickly becoming the de-
facto way to accomplish large-scale tasks on the Internet, one
would think that the skills required to design, implement,
and evaluate distributed systems would be available to stu-
dents at the college and university level. Unfortunately this
is frequently not the case, since most colleges and universi-
ties do not offer undergraduate Distributed Systems courses.
Particularly at small colleges, the problem is often due to a
lack of computing resources. Without access to a dedicated
computing cluster that permits students to run code on dis-
tributed resources, it is difficult to expose students to the
challenges of implementing and evaluating distributed sys-
tems. At large universities, although computing clusters are
present, they are typically reserved for research purposes and
are not readily available for use in the classroom. As a re-
sult, undergraduates are not receiving the training necessary
to become good programmers in distributed environments.

In Spring 2008, I designed and taught a new Distributed
Systems course for undergraduates at Williams College. The
purpose of the course was to introduce students to the key
design principles of distributed systems, help students under-
stand how large-scale computational systems are built, and
ultimately teach students the skills necessary to be successful
distributed programmers. In addition to the more conven-
tional textbook-oriented topics of distributed systems, I in-
corporated several cutting-edge technologies—that are both
used in the real-world and have resulted in high impact re-
search publications—into the course assignments and read-
ings. The course also included four programming projects
that served two key purposes: first, the projects exposed
students to state-of-the-art tools that are commonly used
in distributed application development; second, the projects

gave students hands-on access to distributed computing plat-
forms, allowing them to design and evaluate large-scale sys-
tems running on computers worldwide.

This paper describes my newly developed undergraduate
Distributed Systems course in detail. To summarize, the
course makes the following contributions: (i) the course com-
bines classical, theoretical concepts in distributed systems
with practical, hands-on programming projects that incor-
porate several new widely-used technologies; (ii) the assign-
ments assume no prior knowledge in networks or distributed
systems, making the course accessible to a range of students;
(iii) the course leverages the use of shared computing plat-
forms and open-source software packages to allow students
to develop large-scale systems using a minimal amount of
local computing resources, making the course well-suited for
both large and small schools.

2. RELATED WORK
Throughout the past two decades, several educators have

proposed ways to introduce students to distributed comput-
ing concepts. In the 1990s, the key challenges were develop-
ing courses that emphasized “practical case studies” without
requiring expensive equipment and high performance ma-
chines [8, 10, 25]. In recent years, the need for expensive
supercomputers has diminished, and the emphasis of many
distributed computing courses now focuses on realistically
simulating and emulating large-scale distributed systems us-
ing local resources [14, 16, 20].

The aforementioned previous work had two ideas in com-
mon: (i) a general dissatisfaction with the lack of undergrad-
uate distributed computing courses; and (ii) an acknowledge-
ment of the importance of integrating theory and practice to
give students exposure to realistic systems. While the state-
of-the-art of distributed computing has changed significantly
over the past few decades, these two ideas are still relevant
today. However, the emergence of shared distributed com-
puting platforms, such as PlanetLab [19] and GENI [11],
has created new opportunities for educators to give students
access to diverse sets of distributed resources, even when
budgetary constraints are present.

3. COURSE DESIGN
This section describes the design of a new undergraduate

Distributed Systems course. The projects and topics covered
in this course were inspired by assignments in related courses
at various research institutions [22, 24, 26]. This course was
taught in the Spring 2008 semester at Williams College, and
consisted of 36 classes spread over approximately 14 weeks
of instruction. A total of 14 students were enrolled in the
class, ranging from sophomores to seniors. Prerequisites in-
cluded Data Structures and Computer Organization. The
two main components of the course were reading assign-
ments and programming projects, as discussed in the fol-
lowing sections. Additional information is available on the
course webpage [28].

3.1 Reading Assignments
The course included daily reading assignments from a text-

book [7] in addition to several high-impact research publi-
cations. Since a basic understanding of networks is essen-
tial in distributed systems, and because many students in

the class did not have a background in computer networks,
the course started with a two week review of basic network-
ing concepts such as TCP, UDP, IP, and socket program-
ming. After the networks review, we spent approximately
four weeks covering conventional distributed systems top-
ics, including communication protocols, naming, synchro-
nization, coordination, consistency, and replication. At this
point in the semester, we shifted the focus away from the
theoretical aspects of systems design, and spent two weeks
investigating specific examples of real distributed systems.
In particular, we studied several Google services that have
resulted in research papers, including the Chubby Lock Ser-
vice [5], MapReduce framework [9], and BigTable database
system [6], in addition to different distributed file and storage
system implementations. The remaining four weeks of the
course included discussions related to replication schemes,
fault tolerance, and security, in addition to more wide-area
computing case studies in overlay networks, peer-to-peer sys-
tems, and finally, sensor networks.

Throughout the semester, the students read eight research
publications that supplemented the textbook reading assign-
ments. The goal of the research papers was twofold: to help
students develop the skills necessary to understand and cri-
tique other people’s research projects, and to help students
hone their technical writing abilities. Thus, for each assigned
paper, students submitted a two-page evaluation that sum-
marized the key contributions of the paper, described any
problems with the work, and highlighted the key design prin-
ciples in use. These evaluations (unintentionally) ended up
being one of the most beneficial aspects of the course. At
the beginning of the semester, students struggled to think
critically, and few students were able to find problems in the
research papers. By the end of the semester, the students
were not only finding problems in the papers, but some were
even able to compare and contrast related projects and dis-
cuss the relative merits of each approach. In addition, by
exposing students to several well-written papers, they were
able to learn by example and improve their own technical
writing skills.

3.2 Programming Projects
The course consisted of four programming assignments

spread out evenly throughout the semester. The first two
projects were traditional assignments that taught students
the basic skills required to develop distributed applications.
The last two projects introduced students to new technolo-
gies and computing paradigms, and allowed the students to
experiment with different distributed environments. For all
projects, students had the option of working alone or in pairs.
They were given approximately two weeks to work on each
of the first two assignments, and three weeks to work on each
of the last two. The details of each project are discussed in
this section.

3.2.1 Project 1: Web Server
The first project was the design and implementation of a

basic web server written in C. The project was intended to
teach students the basics of distributed network program-
ming and client-server architectures. Since a web server and
browser-based web client are arguably the simplest example
of a distributed system involving only two computers, the
project eased students into the challenges of distributed sys-

tems. None of the students had any prior experience with
socket programming, and for many students, this was their
first program developed completely in C, which added to the
difficulty of the assignment.

The project required students to implement a fully func-
tional web server that supported HTTP/1.0 and HTTP/1.1
GET requests. They were required to choose a multi-
threaded, multi-process, or event-driven architecture for
their server, and they had to provide enough support so that
basic HTML pages including images were successfully re-
turned to the clients. Support for parsing scripts and POST
requests was not required, although accurate error pages
with properly formatted message headers were mandatory.
In addition to the implementation of the web server, stu-
dents also submitted a write-up that described their server’s
design. The write-up included a basic overview of their im-
plementation, as well as a discussion of the performance of
HTTP/1.0 versus HTTP/1.1 from the perspective of both
the web client and server.

3.2.2 Project 2: Online Bookstore
The second project in the course involved the implementa-

tion of a distributed bookstore. The goals of the project were
to introduce students to client- and server-side remote proce-
dure calls and multi-tier distributed systems. The students
chose between Java RMI or XML-RPC to implement their
store. The store carried only four (fake) books, since the fo-
cus of the assignment was not large-scale data-management,
but instead was intended to help students understand the
design challenges associated with large-scale multi-tier dis-
tributed services. In this assignment the students ran their
code across three separate computers.

The bookstore employed a two tier (front-end and back-
end) design consisting of three total components. The front-
end tier was a server that accepted customer requests for
books, performed initial request processing, and interacted
with the back-end components. Three key operations were
supported by the front-end server: search, lookup, and buy.
The back-end tier included a catalog server and an order
server. The catalog server was similar to a database. It
maintained a list of all books in stock in the store, the cost
of each book, and the general topic area of each book for
searching purposes. The catalog server responded to search
and lookup queries from the front-end server. The order
server maintained a master record of all orders received, and
was responsible for updating the catalog server when new
shipments of books arrived. Every time a buy operation
was issued from a customer, the order server was contacted
by the front-end server to complete the transaction. The
order server frequently interacted with the catalog server to
ensure that the catalog server correctly responded to queries
from customers regarding the price and quantity of books in
stock. Issues related to synchronization among the servers
and concurrent requests had to be considered in the design
of the order server.

As part of the write-up for Project 2, students also per-
formed an evaluation of the performance of their system.
They measured the average response time for customer re-
quests under different levels of server load. The evaluation
allowed students to appreciate the importance of making
good design decisions, especially when customer satisfaction
was at stake. The students also described the design of their

system, and reflected on potential performance bottlenecks
in their write-ups.

3.2.3 Project 3: Inverted Index with Hadoop
After the completion of Project 2, we were approximately

halfway through the semester, and the students had de-
veloped a basic understanding of the key design principles
of distributed systems. Project 3 moved away from the
more conventional programming projects, and introduced
students to new technologies and concepts. This assignment
also exposed students to cluster computing for the first time.
The project was loosely based on a new course developed
at the University of Washington that leveraged the recent
Google and IBM initiative for addressing Internet-scale com-
puting challenges [12]. However, since Williams College was
not part of the initiative, we were unable to gain access to
the large clusters provided by IBM and Google for hosting
distributed computations. Instead, I reconfigured our local
cluster of 14 computers to create mini-clusters of Xen vir-
tual machines (VMs) [3] for students to host their projects.
Each mini-cluster consisted of six VMs. While several tools
are available to simplify virtual cluster management [17, 27],
I used Orca [15] to create approximately 65 VMs in total.
The students then built an inverted index of several clas-
sic eBooks using Apache’s Hadoop framework [13] (which is
an open-source implementation of Google’s MapReduce) on
their mini-clusters. eBooks were obtained from the Project
Gutenberg collection [23].

The project was designed to help students become famil-
iar with the Hadoop/MapReduce distributed programming
model. In addition, since each team of students managed
their own mini-clusters, it also taught students basic system
administration skills. For example, although I created the
mini-clusters, I did not configure the VMs with anything
aside from a basic Linux installation. Thus the students
were given root access to their VMs, and they learned to
install software and configure their clusters. To assist in this
process, I held class in the computer lab one day to make
sure all teams were able to get a trivial MapReduce example
up and running on their mini-clusters. Students with prior
system administration experience enjoyed the opportunity
to tinker on their own clusters without causing problems for
our system administrator, and students with no prior ex-
perience benefited from the chance to learn the basic skills
required to maintain their own working environments. As
in the previous two projects, students submitted a write-
up that described their design, implementation, and results
(i.e., sample output from inverted index).

3.2.4 Project 4: P2P Computing
For their fourth project, the students designed their own

peer-to-peer file distribution service and evaluated its per-
formance on PlanetLab [19]. This project was designed to
introduce students to the fully distributed, peer-to-peer com-
puting paradigm, which is typically more complicated than
client-server architectures. As the final project in the course,
this project was significantly more difficult and less struc-
tured than the first three projects. Students submitted pro-
posals and progress reports to help them focus their ideas
and keep them on task. A “default” system design was also
posted on the course web page to help students who strug-
gled with the open-endedness of this project. On the last

day of class, the students gave short presentations to their
classmates describing their systems, and had the option of
submitting an extended write-up that included extra perfor-
mance evaluations and a detailed related work section in lieu
of a written final exam.

This project had several goals. First, I wanted students
to have the freedom to be creative and design their own
system from scratch. Since P2P computing is a topic that
they all had some familiarity with (thanks to BitTorrent [4]),
they were excited to build their own architectures. Second,
this project moved students off of our local network, and
allowed them to experience the challenges and measure the
effects of large-scale, wide-area computing. PlanetLab is a
publicly available, shared testbed that consists of over 800
Linux computers spread around the world. By joining the
PlanetLab Consortium, which mostly involved connecting
three computers on the Williams campus to the worldwide
testbed, my students were able to run experiments on the
remaining 800 PlanetLab computers across the globe. In
the future, NSF initiatives such as GENI [11] will continue
to create new opportunities for students to experiment with
large-scale, wide-area computing platforms. While GENI
is still in its early stages of development, within the next
few years GENI plans to provide researchers and educators
with access to a diverse set of distributed resources, includ-
ing sensor, mobile, and wireless devices. Shared platforms
like PlanetLab and GENI enable students and researchers
at small schools to experience the technical richness of large
research institutions.

Advancing from six VMs in Project 3 to 800+ machines
in the final project was understandably a bit overwhelm-
ing for some students. In particular, students with no prior
system administration experience struggled to manage code
running across hundreds of machines worldwide. To make
this task easier, students were encouraged to use application
management tools like Plush [1, 21]. Plush was designed
to simplify the complex tasks associated with running ap-
plications on distributed sets of resources. They were also
encouraged to use resource discovery and monitoring tools
such as SWORD [2] and CoMon [18] to find“good”machines
to host their applications. In the end, all students were able
to run their applications on at least 20 machines, and the
most successful group evaluated their service running across
450 PlanetLab computers.

4. EXPERIENCES
This section summarizes my opinions and student feed-

back received about the course.

4.1 Student Feedback
Student feedback for the course was largely positive. The

students liked learning about technologies that are actually
being used by companies such as Google and Yahoo, and
they seemed to enjoy building their own P2P systems. They
found it advantageous to learn practical programming skills
that would be useful after they graduated. I was surprised
by how many students commented on the writing-intensive
aspects of the course. Several students mentioned the bene-
fits of learning to read and write technical papers. They also
liked critically evaluating recent research results. In terms of
improvement, the majority of them noted that they needed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Web Server Bookstore Hadoop P2P

5
4
3
2
1

Figure 1: Student evaluation of project difficulty. 1
was the easiest, and 5 was the most difficult.

extra time for the final project, which I think is a good sug-
gestion. To summarize, the following comments appeared
on end-of-the-semester student evaluations.

• I loved the papers! This was the first class that required
critical responses to papers like that and I was surprised
by how much I enjoyed it.

• Evaluating the papers, while kind of a pain sometimes,
was actually quite valuable in retrospect; I learned a lot
about distributed systems that way, and I’m glad we did
them.

• Labs were actually fun to work on.

• [The P2P project] was one of the hardest and most
rewarding projects I’ve done at Williams.

• I really felt like this was one of the most real-life appli-
cable CSCI courses I took at Williams.

4.2 Project difficulty
As part of their end-of-semester evaluation, I asked the

students to evaluate the difficulty of the projects. The scores
ranged from 1 to 5, with 1 being the easiest score, and 5 being
the most difficult. The results are shown in Figure 1. Based
on these results, the students felt that Project 4 was the
most difficult, followed by Project 1. The general consensus
was that Project 2 was too easy, while Project 3 was mod-
erately difficult. Ironically, when asked whether or not they
would recommend these projects for future use, Projects 1
and 4 received unanimous “yes” votes. Project 2 ranked the
lowest, and only received seven (out of twelve total) recom-
mendations. Project 3 was recommended by ten students.
This indicates that while the students found Projects 1 and
4 to be the most difficult, they also thought they were the
most beneficial and should definitely be included in future
version of the class.

4.3 Instructor Comments
Overall, I was pleased with the design of the course. The

students seemed to enjoy the class. They liked learning
about recent research and using new technologies. I will
likely include additional research papers next time, since
that seemed to be one aspect of the class that received

positive comments from almost everyone. I think the stu-
dents benefited from learning to technically write about their
projects, and all of them showed significant improvement
throughout the semester. Out of the four projects, I think
Projects 1 and 4 were the most effective. Project 1 provided
a good introduction to networks and distributed systems,
and despite their initial concerns, eventually the students all
agreed that learning about sockets in C was good for them.
Project 4 was a bit of a struggle for some students, but in
the end, they all benefited from the experience. I need to
allow at least an extra week for this project next time, and I
plan to drop the written final exam option entirely to allow
them to focus on this final project. Progress reports were a
good way to keep them on track and avoid end-of-semester
procrastination.

Out of the four projects, I was the least satisfied with
Projects 2 and 3. I believe that both projects accomplished
my goals, but ultimately, I think these projects were actually
a bit too easy and boring for the students. For Project 2, I
would like to add a bit more complexity next time. Perhaps
the addition of an actual database or some basic security
measures would make the project more interesting. Also, I
allowed the students to choose between Java RMI and XML-
RPC. XML-RPC is slightly more difficult, and only one stu-
dent chose XML-RPC over Java RMI. In future iterations
of the class I will consider requiring both implementations.
For Project 3, understanding Hadoop and getting the mini-
clusters configured was challenging, but building an inverted
index was easy. Next time I plan to add additional compo-
nents to this project to make it more challenging.

5. CONCLUSIONS
In conclusion, this paper presents the design of a Dis-

tributed Systems course for undergraduates that combines
theoretical “textbook” concepts with practical real-world ap-
plications to give students the hands-on experience necessary
to be successful distributed programmers. The course incor-
porates an introduction to networks and eases students into
the complexities associated with designing distributed sys-
tems, making it accessible to a range of students with dif-
ferent backgrounds. Perhaps most importantly, the course
leverages the increasing availability of shared distributed
computing platforms to bring large-scale systems develop-
ment to even small schools with limited local resources.

6. REFERENCES
[1] J. Albrecht, R. Braud, D. Dao, N. Topilski, C. Tuttle, A. C.

Snoeren, and A. Vahdat. Remote Control: Distributed
Application Configuration, Management, and Visualization
with Plush. In USENIX Large Installation System
Administration Conference (LISA), 2007.

[2] J. Albrecht, D. Oppenheimer, D. Patterson, and A. Vahdat.
Design and Implementation Tradeoffs for Wide-Area
Resource Discovery. ACM Transactions on Internet
Technology (TOIT), 8(2), 2008.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the Art of Virtualization. In ACM Symposium on Operating
System Principles (SOSP), 2003.

[4] BitTorrent. http://www.bittorrent.com/.
[5] M. Burrows. The Chubby Lock Service for Loosely-coupled

Distributed Systems. In ACM/USENIX Symposium on
Operating System Design and Implementation (OSDI),
2006.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A Distributed Storage System for
Structured Data. ACM Transactions on Computer Systems
(TOCS), 26(2), 2008.

[7] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed
Systems: Concepts and Design (4th Edition).
Addison-Wesley Longman Publishing Co., Inc., 2005.

[8] J. C. Cunha and J. Lourenço. An Integrated Course on
Parallel and Distributed Processing. In ACM Technical
Symposium on Computer Science Education (SIGCSE),
1998.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters . In ACM/USENIX
Symposium on Operating System Design and
Implementation (OSDI), 2004.

[10] E. Dillon, C. G. D. Santos, and J. Guyard. Teaching an
Engineering Approach for Network Computing. ACM
SIGCSE Bulletin (inroads), 29(1), 1997.

[11] GENI. http://www.geni.net.
[12] Google and IBM Announce University Initiative to Address

Internet-Scale Computing Challenges. http://www.google.
com/intl/en/press/pressrel/20071008_ibm_univ.html.

[13] Hadoop Project. http://hadoop.apache.org/core/.
[14] V. Y. Hnatyshin and A. F. Lobo. Undergraduate Data

Communications and Networking Projects Using OPNET
and Wireshark Software. In ACM Technical Symposium on
Computer Science Education (SIGCSE), 2008.

[15] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and
K. G. Yocum. Sharing Networked Resources with Brokered
Leases. In USENIX Annual Technical Conference
(USENIX), 2006.

[16] W. D. Laverell, Z. Fei, and J. N. Griffioen. Isn’t It Time
You Had An Emulab? In ACM Technical Symposium on
Computer Science Education (SIGCSE), 2008.

[17] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker.
Usher: An Extensible Framework for Managing Clusters of
Virtual Machines. In USENIX Large Installation System
Administration Conference (LISA), 2007.

[18] K. Park and V. S. Pai. CoMon: A Mostly-Scalable
Monitoring System for PlanetLab. ACM Operating Systems
Review (OSR), 40(1), 2006.

[19] L. L. Peterson, A. C. Bavier, M. E. Fiuczynski, and
S. Muir. Experiences Building PlanetLab. In
ACM/USENIX Symposium on Operating System Design
and Implementation (OSDI), 2006.

[20] C. Pheatt. An Easy To Use Distributed Computing
Framework. In ACM Technical Symposium on Computer
Science Education (SIGCSE), 2007.

[21] Plush Webpage. http://plush.cs.williams.edu.
[22] Problem Solving on Large Scale Clusters. http:

//www.cs.washington.edu/education/courses/490h/.
[23] Project Gutenberg.

http://www.gutenberg.org/wiki/Main_Page.
[24] P. Shenoy. Distributed Operating Systems.

http://lass.cs.umass.edu/~shenoy/courses/spring08/.
[25] C. Stewart. Distributed Systems in the Undergraduate

Curriculum. ACM SIGCSE Bulletin (inroads), 26(4), 1994.
[26] A. Vahdat. Networked Services.

http://www-cse.ucsd.edu/classes/fa07/cse124/.
[27] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
Integrated Experimental Environment for Distributed
Systems and Networks. In ACM/USENIX Symposium on
Operating System Design and Implementation (OSDI),
2002.

[28] Williams College CS339 Course Website.
http://www.cs.williams.edu/~jeannie/cs339/.

