[

invent
RAMBO for Dummies
Jeannie R. Albrecht!, Yasushi Saito
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2005-39
February 24, 2005*
RAMBO, RAMBO and RAMBO 11 are algorithms for emulating shared memory in
consensus, a distributed asynchronous environment with nodes joining and leaving
distributed the system dynamically. This report tries to describe RAMBO and

computing RAMBO II to people without background in 1/O automata.

* Internal Accession Date Only
'Dept. of Computer Science, University of California, San Diego
Approved for External Publication

© Copyright 2005 Hewlett-Packard Development Company, L.P.



RAMBO for Dummies

Jeannie R. Albrecht and Yasushi Saito

Abstract 2 Overview

RAMBO and RAMBO I are algorithms for emulatingRAMBO consists of two components (algorithms) run-
shared memory in a distributed asynchronous envirdind independently. One is tiieader-Writecomponent,
ment with nodes joining and leaving the system dynanfhich is the core of RAMBO, and the other is tRecon
cally. This report tries to describe RAMBO and RAMBCFOmponent, which is responsible for initiating a reconfig-

Il to people without background in 1/0 automata. uration. The key underlying ideas behind these compo-
nents are listed in this section.

Note: The original RAMBO paper defines a
1 Introduction third component, “Joiner”, that bootstraps a

new node into the system. We omit this compo-
In dynamic, distributed environments where storage de- nentin this report.

vices may join or fail at any time during the course of .
) o .e The system consists of a set of nodes that commu-
computation, ensuring liveness, fault tolerance, and avail- .
o : ; nicate through a fully connected network. Some of
ability is usually achieved through various levels of data . .
replication. This distributed replication is used to perform these nodes store replicas of the object. We do not as-
P ’ P P sume that the set of the nodes in the system is fixed—

atomic register emulation. Atomic register emulation is ;
the process by which atomic accesses to shared memor nodes can be be added or removed over time, and
P y Y RAMBO handles these events by changing the quo-

are emulated in message-passing systems. The result is .

o . : rum system dynamically.
a distributed system that ensures linearizable accesses to
the object, i.e., a system that gives the illusion of having® Each replicated object stores a totally ordetsegthat
shared global memory, but in reality actually shares noth- Shows the “newness” of the replica. The tag acts as
ing. The concept of atomic registers have recently been @ Lamport clock. The algorithm ensures linearizable
proved useful in building distributed, redundant storage 'ead and write accesses to the object in the order of
systems, such as FAB [9] and DStore [4], and SSM [7].  the tag.

Atomic registers were first introduced in [1] by Attiya, e A read or write operation uses a variation of tradi-
Bar-Noy, and Dolev. They used a protocol that was based tional atomic-register emulation algorithm [1]. Both
on static quorums of participants to guarantee consistency. types of operations run in two phases. In the first
However they assumed that the system would not undergo “Query” phase, the request coordinator discovers the
major membership changes, which proved to be a limita- newest value and the tag from a quorum of nodes. In
tion. the second “Propagate” phase, the coordinator writes

Lynch and Shvartsman extended the idea further and the new value and tag to a quorum of nodes.
introduced a consensus protocol based on a dynamic quo- The difference between RAMBO and [1] is in the de-
rum that allowed reconfigurations and major membership finition of “quorum”. The algorithm described in [1]
changes. RAMBO [8] (Reconfigurable Atomic Memory  assumes the fixed set of nodes that replicate an object.
for Basic Objects) and RAMBO Il [2] provide formal In contrast, RAMBO allows the set to drift over time.
specifications for reconfigurable atomic shared memory For this purpose, RAMBO allows multiple quorum
as a global service based on dynamic quorums. These sys-Systems, oconfigurationsto coexist simultaneously,
tems allow linearizable read and write accesses [3], even as described next.
when nodes join and leave the system dynamically. e Reconfiguration or the act of changing the set of

The original RAMBO papers are written using I/O au- nodes that replicate the object, happens asynchro-
tomata, which is difficult to crack for people who are not nously from read and write operations. Each repli-
intimately familiar with them. Our report tries to explain  cated object stores the variabl@ap. cmap is a list of
these algorithms in layperson’s terms, in the hope that the configurations each describing the set of nodes that
RAMBO algorithms receive the attention they deserve. are considered live.



3

Reconfiguration starts when someone adds a ndw2 Value

configuration to themap. This “someone” is the Re- . i
con component. As we elaborate more in Section ¥/P€ Value represents the object value. RAMBO is ag-

for all practical purposes, we can assume that Redypstic about the structure of the value; it's anything that
is a Paxos-based state machine [5, 6], running on & Pe read and written locally and atomically.

set of all possible nodes in the system, independently
from RAMBO’s main Reader-Writer component. 3.3 Configuration

When there are multiple configurationsdmap, the

older ones must be removed eventually. Type Configuration identifies a particular membership,
RAMBO provides a background garbage-collectiore-, the list of nodes that are considered to be live and
(GC) algorithm for this purpose. In the origiteplicate the object. The “r” field defines the quorum sys-
nal RAMBO algorithm, the GC component runéem used in the first “Query” phase, and the “w” field de-
sequentially—it removes the oldest configuration iines the quorum system used in the second “Propagate”
the list (on a particular node) before removing theghase. Aquorumis a generalization of a majority—it de-
next. On the other hand, RAMBO Il allows removfines the set of nodes from which an operation must re-
ing multiple configurations at once. This is the onlgeive replies to make progress.giorum systers a set
difference between RAMBO and RAMBO II. of quorums—it defines the possible set of combinations
GC process must ensure linearizability, that is, ti respondents that allow an operation to make progress.
users observe successively newer values even wi&e two fields in any configurationmust satisfy the fol-

the set of nodes that store the object change over tif@ving quorum-intersectioproperty:

To achieve this goal, the GC algorithm runs the two-
phase voting algorithm, described previously, to find
the newest tag and value from a quorum of the old
configuration(s), and writes that value back to a quo-

vgecr, Vg ecwe qng #@ 1)

rum of the new quorum. This way, any read or write
operation that starts in the future will be able to dis-
cover a value written in any GCed configuration.

Note: RAMBO does not require two write quo-
rums to intersect, because it only needs to ensure
linearizability between an operatianthat com-

pletes the “Write” phase, and another operation

[ that starts the “Read” phase.
Data structures

We use the symbdl to denote the set of all possible

Algorithm 1 Variables on each node

configurations, and use the phrase “a valid configuration”

1:
2
3
4
5:
6
7
8
9

10:
11:

ovar

to refer to any element i€. In addition, RAMBO uses

type the following two special configurations that are no€in

Tag = record Their uses are discussed in more detail in Section 3.4.
ts: Timestamp {Lamport clock
node: NodelD {Tie breake}

“F" denotes a configuration that was installed in the

Configuration = record !
past, but has been garbage-collected since then.

r: a set of set of nodes
w: a set of set of nodes

{Read quorum system

{write quorum systefn ¢ « | » j5 g placeholder for a configuration that is yet

_— unknown.
tag: Tag, initially [0, NIL]
val: Value, initially some agreed-on value
cmap: a set of{int — Configuration}, initially {i — L} 3.4 cmap

for all integeri.

Variable cmap describes the list of configurations known

Algorithm 1 shows the persistent variables kept fé® & node. It is a mapping from a sequence number (0, 1,

each replica of the object.

3.1 Tag

...) to a configuration. Initiallycmap does not contain
any valid configuration. For notational convenience, we
represent this state by settingfor every possible index
in cmap.

Type Tag stores a timestamp and the ID of the node thatThe Recon component (i.e., Paxos; Section 4) adds
generated the tag. It is used to uniquely identify differeatvalid configuration after a membership change. The
versions of the object. The RAMBO algorithm ensuregarbage-collection algorithm (Algorithm 3) removes a

that tags assigned to a replica increase monotonically. configuration fromecmap by setting it toF.



Thus, any entry irmap will transition, over time, from A read/write operation can be initiated by any of the
1 to a valid configuration ter. For this reason, we de-nodes that store the object and the associategh. Each
fine the following partial order between configurations toperation runs in two phases: a query phase and a propa-
simplify our presentation. gation phase.

In the query phase (line 17), noddhe initiating node,
contacts all read quorums found étmap to determine the
most recent availabliag andvalue. This ensures that the
4 Recon Component operation discovers a value that is no older than those seen

by prior completed operations.
The Recon component is responsible for generating new
configurations. RAMBO proposes using a concensus prodn the propagation phase (line 27), nad®ntacts write
tocol, such as Paxos [5, €], for the Recon component. \§lgorums. If the requested operation was a “read”, the
find this to be a reasonable suggestion. propagation phase propagates the largest tag and its as-

From a theoretical viewpoint, the only thing thasociated value that was discovered in the query phase,
RAMBO requires from the Recon component is a slightlnd all nodes in the write quorums update their local tags
stronger form of eventual agreement: once two nodasd values accordingly. If the requested operation was a
learn about the identity of théth configuration (for what- “write”, node i creates a new tag that is greater than the
everk), they must agree on what that is. In other wordmost recent tag discovered during the query phase, and
for anyk, and any two nodeisandj with their correspond- the operation propagates the new tag and new value to the
ing cmap; andcmap;, the following must hold at all times. write quorums. The purpose of the propagation phase in
the case of a write operation is to make sure “enough”
members acquire the new tag and value pair.

VceC,L<c< . (2)

cmap; k] € C A cmapj[k] € C

= cmap;[K| = cmap;/K| Line 39 checks whether there is a gap in theap.
. . cmap is gaplessif, for somei andj (i < j), cmap[0]
RAMBO tolerates out-of-order installation O(tAI’lroughcmap[i] are all T, cmapli + 1] throughemapl j]

configurations—that is, it's OK for a node to receivg Il valid. and: 2 11and b d all
the 3rd configuration before receiving the 2nd one—buEe all valid, and:mapl ] +1] and beyond are all.

neither read/write operation processing nor configuration . . . .
garbage-collection will make progress with such a “gap” In addition to reading and writing, the Reader-Writer
in the cmap (Section 6)t Thus, for all practical purposes Omponent is also responsible for garbage collection, or
the Recon component should install the configurations!moving old configurations from the system. Algorithm
the order of the indexes at each node. Paxos can ensu10Ws the garbage-collection algorithm. ~ Like read-
this property easily. We will discuss the significance ##9 @nd writing, garbage collection requires both a query
gaps in more detail in Section 6. phase and a propagation phase. The query phase contacts
Even with Paxos, nodes receive configuration updafé&d and write quorums from the old configuration that is
asynchronously with respect to read, write, or GC opél?'nd to be removed. This allows the initiating node to
ations. Thus, during a read or write operation, a nogather tag and value information from both read and write
may not yet know about configurations other nodes ha#Crums, in addition to making sure that all read and write
already learned. RAMBO handles this situation by piggfiterums know which configurations have already been
backing the node’smap on every read or write messag&arbage collected. The propagation phase then contacts
and letting the recipient update itsiap accordingly. Old & Write quorum from the new configuration. This propa-
configurations in themap are eventually removed by zgates the newest tag and value to the write quorums in the
garbage collection service (see Section 5). new configuration to ensure that they have all acquired the
most recent information.

5 Reader-Writer component Note that the garbage collection component, unlike

. . ) . reader-writer component, uses read and write quorums of
Algorithm 2 shows the algorithm for reading and writing 1y two configurations in themap. Further, it is impor-
the object. Algorithm 4 shows the “backend” algorithrgynt 1 realize that garbage collection and reading—writing
that responds to the messages from coordinators.  can run in parallel. This is due to the fact teatak], for
INote: The “gapless” property is callé@runcated” in the original &Ny K, moves only fromL, to some valid configuration in
RAMBO paper. C,to+F.




Algorithm 2 Reading and writing the object

12: procedure doRead()

Algorithm 3 Removing an old configuration in RAMBO-

{Entry point for “read” }

13:  return dolo(NIL) 47: procedure gc(K) {GC the configuratioremap[k] }
14: procedure doWrite(eewVal) ~ {Entry point for “write”} 48:  precondition
15:  dolo(new Val) 49: Vi <k, cmap|i] = F
50: cmaplK|,cmaplk+1]} CC
16: procedure dolo(new Val) ) {emaplk], emapfk+1]} € ) )
17 i C h -~ 51: old «cmapl[k] {Configuration to be removéd
- replies, optmap <@, cmap {Query phase staf 52:  new«—cmap[k+1] {Next configuration in cmap
18: repeat
19: sendReceiveQuery, cmap], replies, opCmap) 53:  replies <@ {Query phase stajt
20: until received replies from a read-quorum of each valigh: repeat
configuration inopCmap 55: gcSendReceiveQQuery, cmap], old, replies)
01 if val = NIL th 56: until received replies from read- and write-quorunodf
- [Pnewbal = en . . 57:  newTag, newVal —maximum tag and value ireplies
22: newTag «—maximum tagreplies {Read operatioh . . .
. 58:  replies —@ {Propagation phase stajt
23: newVal —value corresponding teewTag 59:  repeat
24: else ) .
. . . . 60: cSendReceivelfropagate, Tag, Val, ,
25: newTs «—max(tag inreplies).ts + 1 {Write operatior} gew replics) efropag newTag, newVal, cmap]
26: ne.WTag [newTs, MY ID] 61: until received replies from a write-quorum oéw
27:  replies —@ {Propagate phase stat .
62: cmap[K] —F
28:  repeat
29: sendReceiveHropagate, newTag, newVal, cmap], 63: procedure gcSendReceivefsg, targets, replies)
replies, opCmap) 64:  Sendmsg to targets
30: until received replies from a write-quorum of each vali5: ~ Wait for a while and add replies t@plies
configuration inopCmap 66: for all reply € newly received repliedo
31: return newVal 67: updateCmar{nap, reply.cmap, true)
32: {Send a request & receive replies from quorums in cjnap

33: procedure sendReceivegsg, replies, opCmap) Algorithm 4 Passive part of the algorithm

34:  Sendmsg to all nodes

35:  Wait for a while and add replies teplies 68: whenreceive RQuery, newCmap]

36: forall reply € replies do 69: updateCmapfnap, reply.cmap, true)

37 updateCmapfnap, reply.cmap, true) 70:  send reply[value, tag, cmap]

38: updateCmap{pCmap, reply.cmap, false) 71: whenreceive Propagate, newTag, new Val, newCmap]
39: if opCmap has a gaphen 72:  if newTag > tagthen

40: replies «—@ 73: tag, value «——newTag, new Val

41: {Update cmap by computing elementwise ma)}ima74: updateCmap(nap, reply.cmap, true)

42: procedure updateCmap{nap, newCmap, doGc) 75: sendreply[cmap]

43: forall (n— c) € newCmap do

44: if ¢ > cmapn| then

45: if ~doGc and ¢ = ¥ then Do nothing rums to be a majority of the configuration. Let's assume
46: elsecmap[n] «—c

that at some moment, thenaps of these nodes are like
below:

6 Why does a cmap need to be gap-

cmapy, = cmapy, = cmapp, = {0+ (p1, P2, P3) }
|eSS? p1 P2 P3

cmapy, = cmapp, = cmapy, = {1— (pa, Ps, Pe) }

Part of the complexity in RAMBO is that it allows the Re-

con component to create a gap in theap. This lookslike  without the gap checking in line 39 of Algorithm 2, one
purely an academic artifact, in that a protocol like Pax@gt of read/write requests could use only the configuration
can easily avoid creating such gaps. But the original ayyy; p,. ps), and another set of read/write requests could
thors allowed gaps anyway, and they handle them rougiiie only only the configuratiofps, ps, Pe).
by stopping and restarting operations once a gap is foundRAMBO solves the “gap” problem simply by restarting
The problem with a gap is that it may create a “splithe operation, and not starting the GC of a configuration
brain” behavior in which two values are read or writtejust before the gap. An alternative, simpler solution would
on disjoint sets of nodes. Consider the following scenaiiave been to demand that the Recon component installs
with six processep; to ps. Define read and write quo-configurations in the order of their indexes.



7 RAMBOII References

In RAMBO, garbage collection is done sequentially. Thid] H- Attiya, A. Bar-Noy, and D. Dolev. Sharing mem-

means that nodes remove obsolete configurations one at>" robustly in message-passing systewisurnal of
ans | . gurations one aty » ACM (JACM)42(1):124-142, 1995.
a time, in order, until only the most recent configuration

remains. This technique performs poorly when commung] s. Gilbert, N. Lynch, and A. Shvartsman. Rambo II:
cation is unreliable, or when reconfiguration is frequent. Rapidly reconfigurable atomic memory for dynamic
RAMBO I [2] aims to fix this problem by allowing old  networks. InProceedings of the International Con-
Configurations to be removed in parallel. ference on Dependab|e Systems and Netwmes
Most of the pseudocode for the read and write oper- 259-268, 2003.

ations in RAMBO s still used in RAMBO II. However
the garbage collection phase in RAMBO is replaced wi
a new configuration upgrade operation. The pseudocode
for this method is shown in Algorithm 5.

{ﬁ] M. P. Herlihy and J. M. Wing. Linearizability: a cor-
rectness condition for concurrent obje@&€M Trans.
on Prog. Lang. and Sys. (TOPLASR(3):463—-492,

July 1990.
Algorithm 5 The configuration garbage-collection algd4] A. Huang and A. Fox. Dstore: self-managing, crash-
rithm for RAMBO-II only persistent hash table. http://swig.stanford.edu-
76: procedure upgradek) {GC configurations up tok Ipublic/projects/dstore/, 2004.
77 replies —@

. . Lamport. The part-time parliament rans.
78:  repeat 5] L. L Th i li BACM T
79: sendReceiveQuery, cmap], replies) on Comp. Sys. (TOCS)6(2):133-169, 1998.

80: until (received replies from read- and write-quorums fo[r6] L. Lamport. Paxos made simplaCM SIGACT News

cmaplj] for Vj < k) )
81:  newTag, newValue —maximum tag and value ireplies 32(4):18-25, December 2001.

82:  replies @

[7] B. C. Ling, E. Kiciman, and A. Fox. Session state:
83: repeat

, beyond soft state. ldst Symp. on Network Sys. De-
84: sendReceivefropagate, Tag, Value, , .
replies) vekiropagate, newTag, new Value, cmap] sign and Impl. (NSDI) pages 295-308, San Fran-

85:  until (received replies from a write-quorum émap[k]) cisco, CA, USA, March 2004.

g?; forC;L;U;( c(i_o:F [8] N. A. Lynch and A. A. Shvartsman. RAMBO: A re-
configurable atomic memory service for dynamic net-
works. In16th Int. Conf. on Dist. Computing (DISC)
pages 173-190, Toulouse, France, October 2002.

[9] V. Saito, S. Frglund, A. Veitch, A. Merchant, and
S. Spence. FAB: Building distributed enterprise disk
arrays from commodity components. Iith Int.
Conf. on Arch. Support for Prog. Lang. and Op. Sys.

This paper described RAMBO and RAMBO Il algorithms  (ASPLOS-XI)Boston, MA, USA, October 2004.

for readers without deep background in the theory of dis-

tributed computing. RAMBO is an algorithm for emu-

lating replicated shared memory in a distributed shared-

nothing environment. It supports dynamic changes to

the set of replicas by allowing multiple configurations

to coexist and removing older configurations in order.

RAMBO Il improves RAMBO by supporting removing

multiple configurations at once. These algorithms are

simpler than they look in the original papers [8, 2]. We

hope that this paper managed to convey the essence of

these algorithms.

We have used a variation of RAMBO in the FAB
distributed disk array, with changes to support high-
throughput, high-capacity storage systems. Interested
readers should also consult our companion paper [9].

8 Conclusion



