
                                              

       
RAMBO for Dummies 
 
Jeannie R. Albrecht1, Yasushi Saito 
Internet Systems and Storage Laboratory  
HP Laboratories Palo Alto 
HPL-2005-39 
February 24, 2005* 
 
  
 
 
RAMBO, 
consensus, 
distributed 
computing 

RAMBO and RAMBO II are algorithms for emulating shared memory in
a distributed asynchronous environment with nodes joining and leaving
the system dynamically. This report tries to describe RAMBO and 
RAMBO II to people without background in I/O automata. 

 

* Internal Accession Date Only 
1Dept. of Computer Science, University of California, San Diego  
                                 Approved for External Publication 
© Copyright 2005 Hewlett-Packard Development Company, L.P. 



RAMBO for Dummies

Jeannie R. Albrecht and Yasushi Saito

Abstract

RAMBO and RAMBO II are algorithms for emulating
shared memory in a distributed asynchronous environ-
ment with nodes joining and leaving the system dynami-
cally. This report tries to describe RAMBO and RAMBO
II to people without background in I/O automata.

1 Introduction

In dynamic, distributed environments where storage de-
vices may join or fail at any time during the course of
computation, ensuring liveness, fault tolerance, and avail-
ability is usually achieved through various levels of data
replication. This distributed replication is used to perform
atomic register emulation. Atomic register emulation is
the process by which atomic accesses to shared memory
are emulated in message-passing systems. The result is
a distributed system that ensures linearizable accesses to
the object, i.e., a system that gives the illusion of having
shared global memory, but in reality actually shares noth-
ing. The concept of atomic registers have recently been
proved useful in building distributed, redundant storage
systems, such as FAB [9] and DStore [4], and SSM [7].

Atomic registers were first introduced in [1] by Attiya,
Bar-Noy, and Dolev. They used a protocol that was based
on static quorums of participants to guarantee consistency.
However they assumed that the system would not undergo
major membership changes, which proved to be a limita-
tion.

Lynch and Shvartsman extended the idea further and
introduced a consensus protocol based on a dynamic quo-
rum that allowed reconfigurations and major membership
changes. RAMBO [8] (Reconfigurable Atomic Memory
for Basic Objects) and RAMBO II [2] provide formal
specifications for reconfigurable atomic shared memory
as a global service based on dynamic quorums. These sys-
tems allow linearizable read and write accesses [3], even
when nodes join and leave the system dynamically.

The original RAMBO papers are written using I/O au-
tomata, which is difficult to crack for people who are not
intimately familiar with them. Our report tries to explain
these algorithms in layperson’s terms, in the hope that the
RAMBO algorithms receive the attention they deserve.

2 Overview

RAMBO consists of two components (algorithms) run-
ning independently. One is theReader-Writercomponent,
which is the core of RAMBO, and the other is theRecon
component, which is responsible for initiating a reconfig-
uration. The key underlying ideas behind these compo-
nents are listed in this section.

Note: The original RAMBO paper defines a
third component, “Joiner”, that bootstraps a
new node into the system. We omit this compo-
nent in this report.

• The system consists of a set of nodes that commu-
nicate through a fully connected network. Some of
these nodes store replicas of the object. We do not as-
sume that the set of the nodes in the system is fixed—
nodes can be be added or removed over time, and
RAMBO handles these events by changing the quo-
rum system dynamically.

• Each replicated object stores a totally orderedtag that
shows the “newness” of the replica. The tag acts as
a Lamport clock. The algorithm ensures linearizable
read and write accesses to the object in the order of
the tag.

• A read or write operation uses a variation of tradi-
tional atomic-register emulation algorithm [1]. Both
types of operations run in two phases. In the first
“Query” phase, the request coordinator discovers the
newest value and the tag from a quorum of nodes. In
the second “Propagate” phase, the coordinator writes
the new value and tag to a quorum of nodes.
The difference between RAMBO and [1] is in the de-
finition of “quorum”. The algorithm described in [1]
assumes the fixed set of nodes that replicate an object.
In contrast, RAMBO allows the set to drift over time.
For this purpose, RAMBO allows multiple quorum
systems, orconfigurations, to coexist simultaneously,
as described next.

• Reconfiguration, or the act of changing the set of
nodes that replicate the object, happens asynchro-
nously from read and write operations. Each repli-
cated object stores the variablecmap. cmap is a list of
configurations, each describing the set of nodes that
are considered live.

1



Reconfiguration starts when someone adds a new
configuration to thecmap. This “someone” is the Re-
con component. As we elaborate more in Section 4,
for all practical purposes, we can assume that Recon
is a Paxos-based state machine [5, 6], running on the
set of all possible nodes in the system, independently
from RAMBO’s main Reader-Writer component.

• When there are multiple configurations incmap, the
older ones must be removed eventually.
RAMBO provides a background garbage-collection
(GC) algorithm for this purpose. In the origi-
nal RAMBO algorithm, the GC component runs
sequentially—it removes the oldest configuration in
the list (on a particular node) before removing the
next. On the other hand, RAMBO II allows remov-
ing multiple configurations at once. This is the only
difference between RAMBO and RAMBO II.
GC process must ensure linearizability, that is, the
users observe successively newer values even when
the set of nodes that store the object change over time.
To achieve this goal, the GC algorithm runs the two-
phase voting algorithm, described previously, to find
the newest tag and value from a quorum of the old
configuration(s), and writes that value back to a quo-
rum of the new quorum. This way, any read or write
operation that starts in the future will be able to dis-
cover a value written in any GCed configuration.

3 Data structures

Algorithm 1 Variables on each node

1: type
2: Tag = record
3: ts: Timestamp {Lamport clock}
4: node: NodeID {Tie breaker}
5: Configuration = record
6: r: a set of set of nodes {Read quorum system}
7: w: a set of set of nodes {Write quorum system}
8: var
9: tag: Tag, initially [0, NIL ]

10: val : Value, initially some agreed-on value
11: cmap: a set of{int 7→ Configuration}, initially {i 7→ ⊥}

for all integeri.

Algorithm 1 shows the persistent variables kept for
each replica of the object.

3.1 Tag

TypeTag stores a timestamp and the ID of the node that
generated the tag. It is used to uniquely identify different
versions of the object. The RAMBO algorithm ensures
that tags assigned to a replica increase monotonically.

3.2 Value

Type Value represents the object value. RAMBO is ag-
nostic about the structure of the value; it’s anything that
can be read and written locally and atomically.

3.3 Configuration

Type Configuration identifies a particular membership,
i.e., the list of nodes that are considered to be live and
replicate the object. The “r” field defines the quorum sys-
tem used in the first “Query” phase, and the “w” field de-
fines the quorum system used in the second “Propagate”
phase. Aquorumis a generalization of a majority—it de-
fines the set of nodes from which an operation must re-
ceive replies to make progress. Aquorum systemis a set
of quorums—it defines the possible set of combinations
of respondents that allow an operation to make progress.
The two fields in any configurationc must satisfy the fol-
lowing quorum-intersectionproperty:

∀q∈ c.r, ∀q′ ∈ c.w • q∩q′ 6= φ (1)

Note: RAMBO does not require two write quo-
rums to intersect, because it only needs to ensure
linearizability between an operationα that com-
pletes the “Write” phase, and another operation
β that starts the “Read” phase.

We use the symbolC to denote the set of all possible
configurations, and use the phrase “a valid configuration”
to refer to any element inC. In addition, RAMBO uses
the following two special configurations that are not inC.
Their uses are discussed in more detail in Section 3.4.

• “∓” denotes a configuration that was installed in the
past, but has been garbage-collected since then.

• “⊥” is a placeholder for a configuration that is yet
unknown.

3.4 cmap

Variablecmap describes the list of configurations known
to a node. It is a mapping from a sequence number (0, 1,
. . . ) to a configuration. Initially,cmap does not contain
any valid configuration. For notational convenience, we
represent this state by setting⊥ for every possible index
in cmap.

The Recon component (i.e., Paxos; Section 4) adds
a valid configuration after a membership change. The
garbage-collection algorithm (Algorithm 3) removes a
configuration fromcmap by setting it to∓.

2



Thus, any entry incmap will transition, over time, from
⊥ to a valid configuration to∓. For this reason, we de-
fine the following partial order between configurations to
simplify our presentation.

∀c∈C,⊥< c <∓. (2)

4 Recon component

The Recon component is responsible for generating new
configurations. RAMBO proposes using a concensus pro-
tocol, such as Paxos [5, 6], for the Recon component. We
find this to be a reasonable suggestion.

From a theoretical viewpoint, the only thing that
RAMBO requires from the Recon component is a slightly
stronger form of eventual agreement: once two nodes
learn about the identity of thek’th configuration (for what-
everk), they must agree on what that is. In other words,
for anyk, and any two nodesi and j with their correspond-
ing cmapi andcmap j , the following must hold at all times.

cmapi [k] ∈C∧ cmap j [k] ∈C

⇒ cmapi [k] = cmap j [k]

RAMBO tolerates out-of-order installation of
configurations—that is, it’s OK for a node to receive
the 3rd configuration before receiving the 2nd one—but
neither read/write operation processing nor configuration
garbage-collection will make progress with such a “gap”
in thecmap (Section 6).1 Thus, for all practical purposes,
the Recon component should install the configurations in
the order of the indexes at each node. Paxos can ensure
this property easily. We will discuss the significance of
gaps in more detail in Section 6.

Even with Paxos, nodes receive configuration updates
asynchronously with respect to read, write, or GC oper-
ations. Thus, during a read or write operation, a node
may not yet know about configurations other nodes have
already learned. RAMBO handles this situation by piggy-
backing the node’scmap on every read or write message
and letting the recipient update itscmap accordingly. Old
configurations in thecmap are eventually removed by a
garbage collection service (see Section 5).

5 Reader–Writer component

Algorithm 2 shows the algorithm for reading and writing
the object. Algorithm 4 shows the “backend” algorithm
that responds to the messages from coordinators.

1Note: The “gapless” property is called“Truncated” in the original
RAMBO paper.

A read/write operation can be initiated by any of the
nodes that store the object and the associatedcmap. Each
operation runs in two phases: a query phase and a propa-
gation phase.

In the query phase (line 17), nodei, the initiating node,
contacts all read quorums found itscmap to determine the
most recent availabletag andvalue. This ensures that the
operation discovers a value that is no older than those seen
by prior completed operations.

In the propagation phase (line 27), nodei contacts write
quorums. If the requested operation was a “read”, the
propagation phase propagates the largest tag and its as-
sociated value that was discovered in the query phase,
and all nodes in the write quorums update their local tags
and values accordingly. If the requested operation was a
“write”, node i creates a new tag that is greater than the
most recent tag discovered during the query phase, and
the operation propagates the new tag and new value to the
write quorums. The purpose of the propagation phase in
the case of a write operation is to make sure “enough”
members acquire the new tag and value pair.

Line 39 checks whether there is a gap in thecmap.
A cmap is gaplessif, for some i and j (i < j), cmap[0]
throughcmap[i] are all∓, cmap[i + 1] throughcmap[ j]
are all valid, andcmap[ j +1] and beyond are all⊥.

In addition to reading and writing, the Reader–Writer
component is also responsible for garbage collection, or
removing old configurations from the system. Algorithm
3 shows the garbage-collection algorithm. Like read-
ing and writing, garbage collection requires both a query
phase and a propagation phase. The query phase contacts
read and write quorums from the old configuration that is
going to be removed. This allows the initiating node to
gather tag and value information from both read and write
quorums, in addition to making sure that all read and write
quorums know which configurations have already been
garbage collected. The propagation phase then contacts
a write quorum from the new configuration. This propa-
gates the newest tag and value to the write quorums in the
new configuration to ensure that they have all acquired the
most recent information.

Note that the garbage collection component, unlike
reader-writer component, uses read and write quorums of
only two configurations in thecmap. Further, it is impor-
tant to realize that garbage collection and reading–writing
can run in parallel. This is due to the fact thatcmap[k], for
anyk, moves only from⊥, to some valid configuration in
C, to∓.

3



Algorithm 2 Reading and writing the object

12: proceduredoRead() {Entry point for “read”}
13: return doIo(NIL )
14: proceduredoWrite(newVal ) {Entry point for “write” }
15: doIo(newVal )

16: proceduredoIo(newVal )
17: replies, opCmap ←φ, cmap {Query phase start}
18: repeat
19: sendReceive([Query, cmap], replies, opCmap)
20: until received replies from a read-quorum of each valid

configuration inopCmap

21: if newVal = NIL then
22: newTag ←maximum tagreplies {Read operation}
23: newVal ←value corresponding tonewTag
24: else
25: newTs ←max(tag inreplies).ts + 1 {Write operation}
26: newTag ←[newTs, MY ID]
27: replies ←φ {Propagate phase start}
28: repeat
29: sendReceive([Propagate, newTag, newVal, cmap],

replies, opCmap)
30: until received replies from a write-quorum of each valid

configuration inopCmap
31: return newVal

32: {Send a request & receive replies from quorums in cmap}
33: proceduresendReceive(msg, replies, opCmap)
34: Sendmsg to all nodes
35: Wait for a while and add replies toreplies
36: for all reply ∈ replies do
37: updateCmap(cmap, reply.cmap, true)
38: updateCmap(opCmap, reply.cmap, false)
39: if opCmap has a gapthen
40: replies ←φ

41: {Update cmap by computing elementwise maxima}
42: procedureupdateCmap(cmap, newCmap, doGc)
43: for all (n 7→ c) ∈ newCmap do
44: if c > cmap[n] then
45: if ¬doGc and c =∓ then Do nothing
46: elsecmap[n] ←c

6 Why does a cmap need to be gap-
less?

Part of the complexity in RAMBO is that it allows the Re-
con component to create a gap in thecmap. This looks like
purely an academic artifact, in that a protocol like Paxos
can easily avoid creating such gaps. But the original au-
thors allowed gaps anyway, and they handle them roughly
by stopping and restarting operations once a gap is found.

The problem with a gap is that it may create a “split-
brain” behavior in which two values are read or written
on disjoint sets of nodes. Consider the following scenario
with six processesp1 to p6. Define read and write quo-

Algorithm 3 Removing an old configuration in RAMBO-
I

47: proceduregc(k) {GC the configurationcmap[k] }
48: precondition
49: ∀i < k, cmap[i] =∓
50: {cmap[k],cmap[k+1]} ⊆C
51: old←cmap[k] {Configuration to be removed}
52: new←cmap[k+1] {Next configuration in cmap}

53: replies ←φ {Query phase start}
54: repeat
55: gcSendReceive([Query, cmap], old, replies)
56: until received replies from read- and write-quorum ofold
57: newTag, newVal ←maximum tag and value inreplies
58: replies ←φ {Propagation phase start}
59: repeat
60: gcSendReceive([Propagate, newTag, newVal, cmap],

new, replies)
61: until received replies from a write-quorum ofnew
62: cmap[k] ←∓

63: proceduregcSendReceive(msg, targets, replies)
64: Sendmsg to targets
65: Wait for a while and add replies toreplies
66: for all reply ∈ newly received repliesdo
67: updateCmap(cmap, reply.cmap, true)

Algorithm 4 Passive part of the algorithm

68: when receive [Query, newCmap]
69: updateCmap(cmap, reply.cmap, true)
70: send reply[value, tag, cmap]
71: when receive [Propagate, newTag, newVal, newCmap]
72: if newTag > tagthen
73: tag, value ←newTag, newVal
74: updateCmap(cmap, reply.cmap, true)
75: send reply[cmap]

rums to be a majority of the configuration. Let’s assume
that at some moment, thecmaps of these nodes are like
below:

cmapp1
= cmapp2

= cmapp3
= {0 7→ 〈p1, p2, p3〉}

cmapp4
= cmapp5

= cmapp6
= {1 7→ 〈p4, p5, p6〉}

Without the gap checking in line 39 of Algorithm 2, one
set of read/write requests could use only the configuration
〈p1, p2, p3〉, and another set of read/write requests could
use only only the configuration〈p4, p5, p6〉.

RAMBO solves the “gap” problem simply by restarting
the operation, and not starting the GC of a configuration
just before the gap. An alternative, simpler solution would
have been to demand that the Recon component installs
configurations in the order of their indexes.

4



7 RAMBO II

In RAMBO, garbage collection is done sequentially. This
means that nodes remove obsolete configurations one at
a time, in order, until only the most recent configuration
remains. This technique performs poorly when communi-
cation is unreliable, or when reconfiguration is frequent.
RAMBO II [2] aims to fix this problem by allowing old
configurations to be removed in parallel.

Most of the pseudocode for the read and write oper-
ations in RAMBO is still used in RAMBO II. However
the garbage collection phase in RAMBO is replaced with
a new configuration upgrade operation. The pseudocode
for this method is shown in Algorithm 5.

Algorithm 5 The configuration garbage-collection algo-
rithm for RAMBO-II
76: procedureupgrade(k) {GC configurations up to k}
77: replies ←φ
78: repeat
79: sendReceive([Query, cmap], replies)
80: until (received replies from read- and write-quorums for

cmap[j] for ∀ j < k)
81: newTag, newValue ←maximum tag and value inreplies
82: replies ←φ
83: repeat
84: sendReceive([Propagate, newTag, newValue, cmap],

replies)
85: until (received replies from a write-quorum incmap[k])
86: for ∀ j < k do
87: cmap[j] ←∓

8 Conclusion

This paper described RAMBO and RAMBO II algorithms
for readers without deep background in the theory of dis-
tributed computing. RAMBO is an algorithm for emu-
lating replicated shared memory in a distributed shared-
nothing environment. It supports dynamic changes to
the set of replicas by allowing multiple configurations
to coexist and removing older configurations in order.
RAMBO II improves RAMBO by supporting removing
multiple configurations at once. These algorithms are
simpler than they look in the original papers [8, 2]. We
hope that this paper managed to convey the essence of
these algorithms.

We have used a variation of RAMBO in the FAB
distributed disk array, with changes to support high-
throughput, high-capacity storage systems. Interested
readers should also consult our companion paper [9].

References

[1] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing mem-
ory robustly in message-passing systems.Journal of
the ACM (JACM), 42(1):124–142, 1995.

[2] S. Gilbert, N. Lynch, and A. Shvartsman. Rambo II:
Rapidly reconfigurable atomic memory for dynamic
networks. InProceedings of the International Con-
ference on Dependable Systems and Networks, pages
259–268, 2003.

[3] M. P. Herlihy and J. M. Wing. Linearizability: a cor-
rectness condition for concurrent objects.ACM Trans.
on Prog. Lang. and Sys. (TOPLAS), 12(3):463–492,
July 1990.

[4] A. Huang and A. Fox. Dstore: self-managing, crash-
only persistent hash table. http://swig.stanford.edu-
/public/projects/dstore/, 2004.

[5] L. Lamport. The part-time parliament.ACM Trans.
on Comp. Sys. (TOCS), 16(2):133–169, 1998.

[6] L. Lamport. Paxos made simple.ACM SIGACT News,
32(4):18–25, December 2001.

[7] B. C. Ling, E. Kiciman, and A. Fox. Session state:
beyond soft state. In1st Symp. on Network Sys. De-
sign and Impl. (NSDI), pages 295–308, San Fran-
cisco, CA, USA, March 2004.

[8] N. A. Lynch and A. A. Shvartsman. RAMBO: A re-
configurable atomic memory service for dynamic net-
works. In16th Int. Conf. on Dist. Computing (DISC),
pages 173–190, Toulouse, France, October 2002.

[9] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and
S. Spence. FAB: Building distributed enterprise disk
arrays from commodity components. In11th Int.
Conf. on Arch. Support for Prog. Lang. and Op. Sys.
(ASPLOS-XI), Boston, MA, USA, October 2004.

5


