Improving Scalability and Fault Tolerance in an Application
Management Infrastructure

Nikolay Topilski*, Jeannie Albrecht’, and Amin Vahdat*

*University of California, San Diego
{ntopilsk,vahdat} @cs.ucsd.edu

Abstract

This paper explores the challenges associated with dis-
tributed application management in large-scale comput-
ing environments. In particular, we investigate sev-
eral techniques for extending Plush, an existing dis-
tributed application management framework, to provide
improved scalability and fault tolerance without sacrific-
ing performance. One of the main limitations of Plush
is the structure of the underlying communication fabric.
We explain how we incorporated the use of an overlay
tree provided by Mace, a toolkit that simplifies the im-
plementation of overlay networks, in place of the exist-
ing communication subsystem in Plush to improve ro-
bustness and scalability.

1 Introduction

Scalability has always been an important aspect of dis-
tributed system design. However, as the cost of com-
puters continues to drop and the availability of large-
scale computing platforms like PlanetLab [19, 5], Ama-
zon EC2 [10], and the Teragrid [8] continues to rise, sys-
tem designers must revisit what it means to make an ap-
plication scale. Today it is common for large-scale clus-
ters to contain thousands of computers or more, provid-
ing petabytes of data storage and hundreds of teraflops
of computing capabilities. While clusters of this size and
capacity have the potential to significantly improve an
application’s performance, designing and deploying ap-
plications that can scale to thousands of computers and
fully utilize all available resources is difficult.

Aside from the difficulties associated with designing
applications that can achieve the maximum performance
possible in large-scale platforms, another often over-
looked problem is configuring and managing the com-
puters that will host the application. Even if the system
designer successfully builds a scalable application, de-
ploying, monitoring, and debugging the application run-

"Williams College
Jjeannie@cs.williams.edu

ning on thousands of high-performance computers intro-
duces many new challenges. This is especially true in
computing platforms where there is no common file sys-
tem running on the computers. In these environments
the developer must manually copy and install the neces-
sary software for running the application to the cluster re-
sources and cope with any problems or failures that occur
during the file transfer and installation processes. Only
after all software has been successfully installed and the
computers correctly configured can the execution begin.
After the execution begins, developers need a way to
detect and, if possible, recover from failures to ensure
that the application runs to completion. When running
an application on thousands of resources!, failures—
including both application-level failures and host- or
network-level failures—are inevitable. If a failure is de-
tected, the steps required for recovery vary, and largely
depend on application-specific semantics. For some ap-
plications, recovery may simply be a matter of restarting
a failed process on a single computer. For other appli-
cations, a single failure may require the entire applica-
tion running across thousands of cluster resources to be
aborted and restarted. For all applications, one fact holds
true: a quick and efficient method for failure detection
and recovery is needed for successful execution.
Distributed application management systems help
ease the burdens associated with deploying and main-
taining distributed applications in large-scale computing
environments. They are designed to simplify many tasks
associated with managing large-scale computations, in-
cluding software installation, failure detection and recov-
ery, and execution management. The goal is to hide the
underlying details related to resource management and
create a user-friendly way to manage distributed appli-
cations running on thousands of computers. In short,
application management infrastructures allow the system

IThroughout this paper, the term resource is used to generally de-
scribe any device capable of hosting an application. The most com-
monly used resource is simply a computer.

designer to focus on fine-tuning the performance of their
application, rather than managing and configuring the re-
sources on which the application will run. There is, how-
ever, an important caveat regarding the use of an applica-
tion management system: the management system itself
must reliably scale at least as well as the application be-
ing managed.

Many existing application management systems scale
to one or two hundred computers, but few achieve
the scalability required in today’s large-scale computing
clusters. In addition, several of the existing systems fo-
cus on tasks associated with system administration, often
making assumptions about the homogeneity of the com-
puting resources that are not always valid in clusters with
thousands of computers. Motivated by the limitations of
existing approaches, our intent is to design and imple-
ment a scalable application management infrastructure
that accomplishes the following four goals:

1. User-friendliness - The infrastructure must be easy
to use and easily adapted for a variety of applica-
tions.

2. Heterogeneous resource support - The system
must be capable of execution in heterogeneous com-
puting environments.

3. Fault tolerance - The management system must au-
tomatically detect and recover from application and
resource failures.

4. Scalability - The infrastructure must scale to hun-
dreds or thousands of resources.

Rather than start from scratch, we chose to use an ex-
isting application management system as a basis for our
work. In particular, we chose Plush [1, 3], a distributed
application management framework initially designed
for PlanetLab. Plush provides several user-friendly in-
terfaces and supports execution in a variety of environ-
ments, thus accomplishing the first two of our four goals.
Plush does not provide adequate scalability or fault toler-
ance, however, based on the size of large-scale comput-
ing platforms in use today. The main problem in Plush is
the design of the underlying communication infrastruc-
ture. The simple design achieves good performance and
fault tolerance in small clusters, but is not resilient to
failures and does not scale beyond approximately 300
resources. Hence, the majority of our work centers on
addressing these limitations of Plush.

To this end, this paper describes the extensions re-
quired to improve the scalability and fault tolerance of
Plush, and introduces an enhanced system called Plush-
M. Plush-M extends Plush to incorporate a scalable and
robust overlay tree in place of the existing star-based
communication subsystem. We leverage the capabilities

of Mace [15], a C++ language extension and library for
building distributed systems, to build our overlay tree.
Since Mace provides many useful features for design-
ing scalable and robust overlay networks, the integration
of Plush and Mace enables us to experiment with many
different types of overlays for the communication infras-
tructure in Plush to ultimately determine the best design.

The remainder of this paper is organized as follows.
Section 2 describes an overview of Plush and Mace, and
motivates our design of Plush-M. Section 3 discusses
some of the problems that had to be addressed during the
implementation of Plush-M, and how we overcame these
issues. Section 4 provides a preliminary evaluation of the
scalability and fault tolerance of Plush-M, while Section
5 discusses related work. Finally, Section 6 describes
future directions that we plan to explore and Section 7
concludes.

2 Plush and Mace: A Brief Overview

This section briefly describes Plush and Mace. Since the
design and implementation of Plush-M largely consists
of the integration of Plush and Mace, it is helpful to un-
derstand what Plush and Mace do in isolation before dis-
cussing the design of Plush-M in Section 3.

2.1 Plush

Plush is a generic, distributed application management
infrastructure that provides a set of “building-block” ab-
stractions for specifying, deploying, and monitoring dis-
tributed applications. The building-block abstractions
are part of an extensible application specification lan-
guage that Plush uses to define customized flows of con-
trol for distributed application management. By defin-
ing a custom set of blocks for each application, devel-
opers can specify exactly how their application should
be executed and monitored, including important behav-
iors related to failure recovery for application-level er-
rors detected by the Plush monitoring service. Plush
also provides advanced support for multi-phased applica-
tions (which are common in grid environments) through
a set of relaxed synchronization primitives in the form
of partial barriers [2]. Partial barriers help applications
cope with “straggler” computers by automatically de-
tecting bottlenecks and remapping uncompleted compu-
tations as needed. Applications that use partial barriers
achieve improved performance in failure-prone environ-
ments, such as wide-area testbeds.

Plush’s architecture primarily consists of two key
components: the controller and the clients. The Plush
controller, which usually runs directly on the applica-
tion developer’s desktop computer (also called the con-
trol node), issues instructions to the clients to help direct

the flow of control for the duration of the execution. All
computers aside from the controller that are involved in
the application become Plush clients (or participants). At
the start of an execution, all clients connect directly to the
server using standard TCP connections. Plush maintains
these connections for the lifetime of the application. The
controller then directs the execution of the application by
issuing commands to each client which are then executed
on behalf of the developer. This simple client-server de-
sign results in quick and efficient failure detection and
recovery, which are both important aspects of applica-
tion execution management.

The original design of Plush targeted applications run-
ning on PlanetLab. PlanetLab is a volatile, resource-
constrained wide-area testbed with no distributed file
system. The initial version of Plush provided a min-
imal set of automated failure recovery mechanisms to
help application developers deal with the most common
problems experienced on PlanetLab. Over the past few
years, Plush was extended to provide generic applica-
tion management support in a variety of computing en-
vironments. In particular, Plush now supports execution
on Xen virtual machines [4], emulated ModelNet virtual
clients [20], and cluster computers. However, since the
size of PlanetLab during the initial development of Plush
was approximately 400 computers worldwide, the cur-
rent design does not scale well beyond a few hundred
computers. Thus before Plush will be useful in large-
scale clusters, scalability must be revisited.

2.1.1 Plush Communication Subsystem

While a detailed discussion of how Plush manages dis-
tributed applications is outside of the scope this paper, it
is important to understand why Plush does not provide
the scalability or fault tolerance required in large-scale
computing platforms. The main scalability bottleneck in
Plush is the communication subsystem. By default, all
clients participating in the execution of an application
connect directly to the controller, forming a star topol-
ogy. This star topology provides optimal performance,
since all of the clients directly link to the control node.
Furthermore, the star topology is easy to maintain, be-
cause fault handling in the communication fabric is rel-
atively simple. For example, in case of a single client
failure, only the failed client is affected. Unfortunately
there is a trade-off between performance and scalabil-
ity. The star topology scales well to approximately 300
nodes, but performance drops off significantly beyond
that point due to OS-defined file descriptor limits per pro-
cess allowed on the control node. In addition, resources
like spare CPU cycles, bandwidth, and latency required
to communicate with client machines become a bottle-
neck at the control node.

For applications running in large-scale clusters, Plush
was extended to use a simple tree topology for commu-
nication rather than a star. The tree topology supports
a maximum depth of only two levels, which results in
“bushy” trees where each non-leaf node has a large num-
ber of children. The goal was to reduce the number of
connections to the control node while also minimizing
the number of network hops between the controller and
all clients. Unfortunately, while the basic tree topology
achieves relatively good performance and scalability, it
is not very robust to failures. The failure of intermediate
and leaf nodes can lead to unbalanced trees, unaccounted
loss of participant nodes, and large tree reconfiguration
penalties. Furthermore, imposing a maximum tree depth
limitation of two requires intermediate nodes (children
of the root) to have sufficient CPU and bandwidth re-
sources available to support large numbers of children
(leaf nodes), similar to the resource requirements neces-
sary at the control node.

Thus, in failure prone environments Plush is essen-
tially limited to utilizing the star topology with 300 nodes
or less. The only way to use the tree topology effec-
tively is to carefully select reliable and well-connected
non-leaf nodes for successful execution of distributed ap-
plications. In order to use Plush in large-scale environ-
ments, the shortcomings of this tree building mechanism
must be addressed.

2.2 Mace

Mace is a C++ language extension and source-to-source
compiler designed to simplify the development of ro-
bust distributed systems. Developers define their appli-
cations using an expressive high-level specification lan-
guage that hides many of the mundane details associ-
ated with implementing distributed applications. The
Mace compiler translates the high-level specifications
into standard C++ implementations. The guiding prin-
ciple of Mace’s design is abstracting functionality into
layers with specified interfaces, which are in turn used
to construct complex systems. The transition between
layers is done via callbacks that are triggered by events.
Much of the code needed for failure detection and han-
dling is automatically generated from semantic infor-
mation embedded in the system specification. This ap-
proach significantly improves code readability and re-
duces the complexity associated with maintaining the ap-
plication. Mace’s state transition model further enables
the practical model checking of distributed systems im-
plementations to find both safety and liveness bugs [16].

Mace is fully operational and has been in develop-
ment for over four years. Many distributed systems have
been built using Mace during this time, including sev-
eral that involve the creation of robust overlay networks

[Plush—M Communication Fabric]

\

[ReceiveData] [’I‘ransportError] OverlayJoin [TreeStructure]

N/

TCP Transport /
Route Service class

Mace Overlay

Figure 1: Plush-M communication fabric interacting
with a Mace overlay. The gray boxes show part of the
API used by Plush-M to interact with Mace. The TCP
Transport and Route Service is also provided by Mace.

for data storage and dissemination [18]. As a result,
Mace provides built-in support for the common opera-
tions used in overlay network creation and maintenance.
One particularly useful protocol provided by Mace is
RandTree. RandTree is a protocol that constructs an
overlay network based on a random tree. Participants
in a RandTree overlay network use the RanSub proto-
col [17] to distribute fixed-size random subsets of global
state to all overlay participants, overcoming scaling lim-
itations and improving routing performance. This allows
the RandTree protocol to dynamically adapt to chang-
ing network conditions and reconfigure in the face of
failures. In short, RandTree creates a random tree with
a predefined maximum degree, and automatically han-
dles reconfiguration when any participating node fails,
including the root.

2.3 Merging Plush and Mace

In summary, Plush in an application management infras-
tructure that is designed to simplify distributed applica-
tion execution. Although it is robust for small clusters,
Plush does not provide the scalability or fault tolerance
necessary in today’s large-scale clusters. Mace is a C++
language extension that simplifies the development of
distributed systems and provides built-in support for cre-
ating some basic overlay networks, including many over-
lay trees. Thus, by merging the two systems to create a
new system called Plush-M, we can leverage the advan-
tages of both Plush and Mace to create a scalable applica-
tion management infrastructure that is based on a robust
overlay tree provided by Mace.

Plush is designed as a monolithic layered application.
To utilize an overlay provided by Mace, the entire com-
munication subsystem in Plush must be replaced. How-
ever, we still want to maintain the layer integrity within

Plush itself. We accomplish these goals by treating the
Mace overlay as a black box underneath of Plush, expos-
ing only a simple API for interacting with the overlay
network. In the original design of Plush, the controller
had to manage the topology of the communication fab-
ric. By inserting a Mace overlay as a black box that is
used for communication, the details of the overlay con-
struction and maintenance are hidden from the controller.
The Plush controller is mostly unaware of the topology
of the hosts that are involved in an execution; the con-
troller knows only the identity of the participating nodes.

This “black box” design not only allows for the inde-
pendent upgrade of Plush and Mace, but also gives us the
ability to use a variety of overlay services and protocols
provided by Mace since most use the same API (shown in
Figure 1). We hope to eventually provide developers with
the functionality required to select the overlay network
protocol that is best suited to handle the communication
needs of their application. It is important to realize that
since Mace is a general purpose framework for design-
ing distributed applications, its integration into Plush-M
may introduce a slight overhead when compared to the
simple tree that Plush provides, but we believe that this
is a small price to pay for the improved scalability and
fault tolerance.

Although the functionality provided by Mace allows
developers to build a variety of overlay networks, we
chose to integrate the RandTree protocol into Plush-M.
There are several reasons why we chose RandTree in-
stead of other tree-building protocols [14, 12]. In partic-
ular, RandTree provides the following benefits:

e Simple - RandTree’s design is simple and efficient.
Since it does not try to optimize for latency or band-
width like many other overlay tree-building algo-
rithms, the tree can be constructed quickly based on
random decisions.

Adaptive - Since RandTree is based on the Ran-
Sub protocol, it is adaptive to changing network
conditions, which is an important property to have
when trying to achieve fault tolerance in potentially
volatile conditions.

Mature - The Mace implementation of RandTree is
stable and mature, and has been successfully used
by many other developers in the past. This mini-
mizes the possibility of bugs and design problems
that might occur if we implemented a new protocol
from scratch.

3 Design and Implementation of Plush-M

This section discusses the design and implementation of
Plush-M, an extension of Plush that provides improved

Control
Node

Participants

Figure 2: Separation of the control and root nodes in
Plush-M. Plush-M uses RandTree to build its communi-
cation infrastructure. As part of the RandTree protocol,
RanSub is used to deliver subsets of global state to all
overlay participants. The RanSub links are shown using
dotted lines, while the direct tree connections are shown
using thick solid lines.

scalability and fault tolerance by using Mace’s RandTree
protocol as the underlying communication fabric. We
start by describing the organization of the new tree topol-
ogy, followed by a summary of the overlay construction
and disconnection procedures. Lastly, we discuss the ad-
dition of a new auto-upgrade mechanism in Plush-M.

3.1 Separating Control and Root Nodes

The original Plush design relies on communication via a
star or basic tree topology, with the control node always
being the center of the star or root of the tree. With the in-
troduction of RandTree as a black box beneath the Plush
communication subsystem, the root selection mechanism
becomes hidden from Plush. The functionality of the
control node, which includes listening for input from the
developer and directing the flow of control in executions,
must be separated from the root node. In fact, the con-
trol node in Plush-M is not even connected to the over-
lay. Instead, the control node maintains a direct TCP
connection to the root of the tree, as shown in Figure 2.
This complicates the design of Plush-M since additional
functionality is needed to keep the control and root nodes
informed of each other.

The application developer designates the identity of
the control node when Plush-M is started. Typically this
node is chosen to be the developer’s desktop computer.
When managing an application using the original design
of Plush, the control node establishes a connection to the
required number of computers and invites them to partic-
ipate in the execution of the application. Since the root
of the tree is no longer the same computer as the con-
trol node, this process is a bit more complex in Plush-M.
First, the control node randomly selects a root node and
sends it an invitation. Once the control node connects

to the newly chosen root, the controller sends all subse-
quent invitations that it creates on to the root node for
forwarding. The process of extending an invitation in-
volves first verifying the liveness of the invited node, and
then starting the Plush-M client process on it. For large-
scale clusters, the number of outstanding invitations can
grow quite large. Thus, in order to reduce the load at
the root, the controller limits the number of outstanding
invitations to a predetermined maximum value.

Through the lifetime of the application, different par-
ticipant nodes may join and leave the overlay. The root of
the tree can also change in Plush-M, which is something
that never occurred in the original design of Plush. When
changes to the overlay occur, Plush-M receives upcalls
from Mace. If the root of the tree changes, Mace notifies
the old root node (via an upcall) that it is no longer the
root. The old root must make sure the new root knows the
identity of the control node. Thus the old root then sends
a SETCTRL message through the overlay to the new root
using a multicast “collect call” provided by Mace. The
collect call ensures that the message is successfully de-
livered to the new root of the overlay. Upon receiving
a SETCTRL message, the newly elected root node must
inform the control node of its identity. To accomplish
this, the new root sends a SETROOT message to the con-
trol node. When the control node receives the SETROOT
message, it updates its state with the new root’s identity,
initiates a connection to the new root, and closes its con-
nection to the former root.

Furthermore, to ensure that the control node stays con-
nected to the acting root node of the overlay, the control
node also periodically sends a SETCTRL message to the
node that it believes is the root of the tree. The SETCTRL
message is then processed in the usual way, using a mul-
ticast collect call to traverse the tree up to the root. The
root responds with its SETROOT message as usual. If the
control node receives a SETROOT message from a node
other than the one it thought was the root, it updates its
state. This same procedure is used to update the control
node when it reconnects after a disconnection.

3.2 Control Node Responsibilities

The control node performs several essential actions
throughout the duration of the application’s execution.
First and foremost, it provides a user interface for the ap-
plication developer to interact with the execution. Sec-
ondly, the control node is responsible for tracking out-
going invitations to join the overlay. These invitations
are created in response to input from the application de-
veloper, or as part of an execution. The control node
maintains a queue of records containing the name of each
invited node. The record persists until the control node
receives a confirmation of the node joining the overlay, or

until notice of a failure is received. The invitation queue
allows the control node to account for all invitations and
limit the number of unconfirmed invitations.

The control node in Plush-M also plays the role of
the execution controller and barrier manager, just like
the control node in Plush. The control node ensures
that all participants in the overlay receive any required
application-specific software or data, and if synchroniza-
tion barriers are specified, ensures the synchronized exe-
cution of the application on all participating nodes. The
control node can be disconnected if it is not actively
inviting nodes or controlling an execution, such as dur-
ing a long-running computation. Once the control node
reconnects, the root tells it the list of participating nodes
in the overlay. Unfortunately, in the current implementa-
tion of Plush-M, if the control node fails while there are
outstanding invitations, all of its active state is lost. In
such cases, the control node must reconnect to the root,
destroy the existing overlay, and start over. We are cur-
rently exploring ways to restore the state of the control
node without requiring a complete restart of the existing
execution.

3.3 Creating the Overlay Tree

All invitations to join the overlay originate at the con-
trol node. Note that the Plush-M controller is responsible
for choosing which computers will host the application;
we only rely on RandTree for managing the communi-
cation fabric among participants. Invitations in Plush-M
take the form of SETPEER messages that are sent from
the controller to the root node, which then extends the
invitation. SETPEER messages serve two purposes: 1)
they test the liveness of the potential participant, and 2)
they tell the potential participant to join the overlay. If
SETPEER fails, then either the potential participant is
offline, or the potential participant is online but not cur-
rently running the Plush-M client process. In the latter
case, the root node triggers a remote startup mechanism
that launches the Plush-M client executable on the poten-
tial participant, and then sends the SETPEER message
again. If the node is offline or unable to start the Plush-
M client process, the root informs the controller of the
failure.

Upon receiving a SETPEER message, each potential
participant makes a downcall to Mace asking to join the
overlay. Once the node has successfully joined, Mace
notifies the parent of the newly joined node via the
peerJoinedOverlay upcall in Plush-M. The parent
node then informs the new child of any relevant Plush-M
specific details. The parent sends SETROOT, INVITE,
and SETCTRL messages to the child to inform it of the
identity of the controller and root nodes. The child node
processes these messages, and responds to the INVITE

by sending a JOIN message to the root. The root node
processes the JOIN message and adds the newly joined
host to the table of participating nodes.

The original design of Plush uses “connection” ob-
jects internally to help keep track of the connection
status of participating hosts. Retaining this func-
tionality in Plush-M required the addition of sev-
eral new Mace upcall methods. @ Mace calls the
notifyParentChanged method on overlay partic-
ipants every time there is a change in a parent node.
This method provides the identity of the new parent.
The notifyChildrenChanged method is called on
overlay participants whenever a child of the participant
changes, and it provides the identities of all actively con-
nected children. Both of these methods help keep Plush-
M’s internal host and connection structures current, by
invalidating old connections and creating new ones as
needed. The notifyRootChanged method is called
at the new and former root when the root is switched.
This causes the former root to send a SETCTRL mes-
sage, which eventually reaches the new root, and notifies
it of the control node’s identity.

3.4 Overlay Error Detection

Similar to the upcalls for overlay maintenance, Mace
reports network communication errors in the commu-
nication fabric through another set of upcalls. Plush-
M relies on this mechanism to track the node connec-
tion status for all participants in the overlay. When a
node receives an upcall from Mace indicating a commu-
nication error to another host, the receiving node reacts
by deleting the connection object for the disconnected
host. Then, to ensure any necessary tree reconfigura-
tions are initiated, the receiving node checks the discon-
nected host’s position in the overlay tree relative to itself.
If the disconnected host is the node’s child or parent in
the tree, a DISCONNECTED message is forwarded to the
root node. Alternatively, if the disconnected host is nei-
ther a parent or child of the node, the node forwards a
GETSTATUS message up to the root. The root in turn
sends a GETSTATUS message to the host in question. If
the root nodes confirms the disconnection, the root marks
the disconnected host as DISCONNECTED, informs the
control node, and tree reconfiguration begins.

During an application’s execution, some nodes
might experience network outages and be reported as
DISCONNECTED to the root and control nodes. De-
pending on the length of the execution, the control
node may later try to re-establish connection to the
DISCONNECTED node(s). If the reconnection is unsuc-
cessful, the disconnected node is marked as FAILED and
is permanently removed from the execution. If the recon-
nection is successful, the node is reincorporated into the

execution. However, if this node continues to disconnect
frequently, it is assumed to have an unreliable network
connection. After a preset number of disconnects within
a specified timeframe, the node is marked as FAILED
and is never re-invited to participate.

3.5 Internal Name Reconciliation

The original design of Plush relies on a structure of type
HostID to record hostname and port usage information
about participating nodes. Similarly, Mace relies on ob-
jects of type MaceKey to identify its nodes, which, in
our case, also contains the node’s IP address. When inte-
grating Plush and Mace in the implementation of Plush-
M, a problem arose when nodes had multiple aliased
hostnames. When a node receives a message from an-
other participant in Plush-M, the receiving node initial-
izes a HostID object with a hostname derived from
MaceKey'’s IP address. If the node uses an aliased host-
name, the resolution process may produce a different
hostname than the name already registered as a partici-
pant. This seemingly minor detail caused many problems
in our initial implementation of Plush-M.

To address the problems involving conflicting host-
names and ensure the proper operation of Plush-M, we
had to reconcile the two addressing systems. The first
step in this reconciliation involved adding a MaceKey
object as a member of the HostID structure. Since
Plush-M extensively relies on Host ID objects through-
out the duration of the execution, many additional
changes were also required. Plush only resolves host-
names into IP addresses when a new connection is ini-
tialized to a new participant. Following the same princi-
ple in Plush-M, the MaceKey object is initialized, which
includes resolving the hostname into an IP address, for
all nodes that are invited to participate in the overlay.
Initializing a MaceKey object for all available cluster
nodes is expensive and wasteful, especially if only a frac-
tion of them are required for execution. Thus MaceKey
objects are only initialized for nodes that are involved
in an execution. One caveat of this approach is ensur-
ing that Host IDs with initialized MaceKeys are never
compared to Host IDs without initialized MaceKeys in
the Plush-M implementation. (This can only occur on
the control node.) The results of this comparison are not
valid, and can lead to incorrect behavior.

3.6 Disconnecting the Overlay

Once the execution completes, the overlay must be dis-
mantled before the control node disconnects from the
root. Failure to do so will result in the overlay continuing
to exist even after the control node disconnects. While
there is nothing inherently wrong with keeping the over-

lay connected, it does waste computing resources. To
disassemble the overlay, a disconnect command is issued
by the control node. The disconnect command causes a
DISCONNECT message to be sent from the control node
to the root node, and then from the root node to all other
nodes in the overlay via a broadcast mechanism provided
by Mace. When a node receives the DTSCONNECT mes-
sage, it attempts to terminate the execution of the Plush-
M client process. The termination of the process is al-
lowed only if the node has no connected children. Thus,
the root node must wait for all of its children to discon-
nect, and hence the root always disconnects last. Further-
more, once a node receives the DISCONNECT message,
it broadcasts additional DI SCONNECT messages repeat-
edly to its children until all children have disconnected.
This approach works even in the face of any overlay re-
configuration that occurs as the nodes start leaving the
overlay.

To further speed-up the process of overlay disman-
tling, each node in the overlay starts a two minute timer
upon receiving a new DISCONNECT message. When
the timer expires the Plush-M client terminates, even if
the node still has connected children. This scenario, and
some other situations involving uncommon errors, has
the potential to leave individual unconnected nodes in
an active state running the Plush-M client. These unat-
tended nodes eventually detect that they have no active
connections left, causing them to set their two minute
expiration timer. If the node does not receive any mes-
sages or start any new connections within the expiration
time, the Plush-M client will be terminated. Note that
the process of overlay dismantling on large topologies
and trees of greater maximum depths does take longer
due to the increased number of network hops between
the root node and the leaf participants. However, with
the disconnection timeout mechanisms described above,
the control node is safe to terminate without waiting for
hosts to report their disconnection.

3.7 Client Auto Upgrade

During the development of Plush-M it was essential to
have the latest version of the client present on participat-
ing nodes for proper operation. We introduced a new
automatic upgrade mechanism in Plush-M to support
this functionality. Since managing software versions and
supporting upgrades are both common actions in a dis-
tributed system, our initial intention was to make this a
general abstraction in Plush-M that developers could use
to simplify node configuration and application manage-
ment. The automatic client upgrade mechanism in Plush-
M is quite simple. Prior to starting the Plush-M client
on each participating node, Plush-M runs a maintenance
script on the node that obtains versioning information for

Time to construct overlay tree (seconds)

0 250 500 750 1000
Number of Nodes

Figure 3: Time to construct RandTree in Plush-M using
varying number of virtual ModelNet clients.

the latest Plush-M client from an external software repos-
itory. If the node is running an outdated version of the
Plush-M client, the maintenance script downloads and
installs the latest client from the repository. The main-
tenance script is also capable of performing other tasks,
such as removing old data or log files.

Although the use of the maintenance script and the au-
tomatic client upgrade mechanism works as desired and
accomplishes our goals, we find that the upgrade proce-
dure can be quite expensive, especially if the node has a
slow or lossy network connection to the software repos-
itory. In addition, our experience shows that it is im-
portant to provide a way to disable the automatic client
upgrade mechanism, since clusters that run a common
file system do not need to download updates. We do be-
lieve that automating software upgrades is an important
aspect of application management, however further in-
vestigation and experimentation is required to improve
performance. We revisit the performance of the auto-
matic upgrade feature in more detail in Section 4.

4 Evaluation

Since our overall goal was to improve the scalability and
fault tolerance of Plush, to evaluate our work we tested
Plush-M’s ability to connect to several hundred comput-
ing resources. We performed experiments to measure
scalability and fault tolerance in wide-area environments
using PlanetLab, and in emulated environments using
ModelNet. For our PlanetLab experiments, we used ap-
proximately 100 randomly chosen PlanetLab hosts. Al-
though PlanetLab contains almost 1000 hosts, we found
it difficult to find more than 100 that were usable and
available to host our experiment at any point in time.
(Note that this limitation is due to the underlying infras-
tructure of PlanetLab, and has nothing to do with Plush-

20

Average Laleﬁcy — X
181 Maximum Latency ----x--

16 S

14+ 1

Roundtrip Latency (seconds)

0 250 500 750 1000
Number of Nodes

Figure 4: Average and maximum latency required for a
message to be sent from the Plush-M controller to all
participants, and for all participants to send a reply.

M.) To further test scalability, we created emulated Mod-
elNet topologies with varying numbers of virtual clients
using 17 physical machines. For ModelNet topologies
with more than 1000 virtual clients, the physical ma-
chines began to run out of memory. Thus our testing was
limited to topologies with 1000 virtual clients.

4.1 Scalability

Our first set of experiments tested the scalability of
Plush-M for varying numbers of ModelNet emulated
clients. The goal was to show that Plush-M scales be-
yond Plush’s limit, which is approximately 300 nodes.
To verify Plush-M’s scalability, we measured the com-
pletion time for the following two operations: 1) the time
to construct the overlay tree, and 2) the roundtrip time
for a message sent from the control nodes to all partic-
ipants and then back to the control node. We ran these
experiments for 10, 250, 500, 750, and 1000 clients. The
results are shown in Figures 3 and 4. In both sets of ex-
periments, we limited the construction of RandTree to
allow a maximum of twelve children per node. There-
fore, for a perfectly balanced tree, the depth would be
approximately 3. In addition, we limited the number of
concurrent outstanding invitations to 50. The length of
time required for the control node to connect to the root
of the overlay is not included in our measurements. Also
note that the auto-upgrade mechanism was disabled dur-
ing these experiments.

The overlay tree construction times measured (and
shown in Figure 3) were longer than we expected them
to be. We speculate that this is due to the start-up time of
the client on the participating nodes. Preliminary testing
revealed that increasing the maximum size of the out-
standing invitation queue from 50 to 100 invitations did
not have a significant effect on the connection time. Sim-

120

PlushM +‘-Upgrade —
PlushM -
Plush --x
100 [b
g
§ 80 | b
o
£
S 6e0r J
S
8
1S
q 40 7
3
14
20 1
0
0 20 40 60 80 100

Number of Nodes

Figure 5: Average recovery time of PlanetLab nodes, af-
ter failure of 25% of the overlay participants.

ilarly, changing the maximum out-degree of the nodes
from 12 to 50 also did not have a noticeable effect. Fur-
ther investigation of the issue indicated that the prob-
lem resulted from a limitation in our experimental setup.
Since multiple ModelNet clients are emulated on a single
machine, there is a limit on how many processes the ma-
chine can start simultaneously, and thus some clients ex-
perience a delay when starting the Plush-M process. We
believe that the construction time would be much faster
if more machines were available for experimentation.

To test the message propagation time in the overlay,
we first waited until the tree was completely constructed.
Then we broadcast a message from the control node out
to all participants and waited for a reply. We measured
the time between when we sent the message until each
node replied. The broadcast message triggered the exe-
cution of the ‘hostname’ command on each remote node.
By default, all terminal output is sent back up the tree
to the root and then passed to the control node. Fig-
ure 4 shows our results. One line indicates the maximum
time measured, and the other line indicates the average
time across all participants for the reply message to be
received by the control node. In summary, we were rel-
atively pleased with the measured times, since we were
able to receive replies from most hosts in less than 10
seconds (on average) for our 1000-node topology. Note
that in this experiment we were unable to compare to
Plush, since Plush does not support execution on more
than 300 nodes.

4.2 Fault Tolerance

Providing fault tolerance in Plush-M largely depends on
being able to detect and recover from failures quickly.
Thus, we conducted several experiments to measure the
failure recovery time for participants in the overlay when

10

PlushM ———
Plush -

Reconnection time (seconds)

. .
0 100 200 300 400 500
Number of Nodes

Figure 6: Average recovery time of ModelNet nodes, af-
ter failure of 25% of the overlay participants.

a host-level failure occurred. The goal was to see how
long it took for the failed nodes to rejoin the overlay tree
after being manually disconnected to simulate failure.
By using RandTree instead of the default star in Plush,
Plush-M incurs some overhead associated with tree com-
munication and reconfiguration. We wanted to verify that
this overhead did not negatively impact Plush-M’s ability
to detect and recovery from failures quickly.

To test failure recovery and fault tolerance in Plush-
M, first we started an application on all nodes that just
executed “sleep” for a sufficiently long period of time.
During the execution of the sleep command, one quarter
of the participating nodes were failed, which essentially
amounted to manually killing the Plush-M client process.
We then measured the time required for the failed hosts to
detect the failure, restart Plush-M, and rejoin the overlay
(possibly causing a tree reconfiguration). We repeated
the experiment with varying numbers of nodes to explore
how the total number of participants affected the recov-
ery time. Plush-M was again run with RandTree using a
maximum of twelve children per node.

4.2.1 Failure Recovery on PlanetLab

Figure 5 shows the results from running our failure re-
covery experiment on PlanetLab with the number of
hosts ranging from 10 to 100. The results show the av-
erage reconnection time of Plush-M running with auto-
matic upgrade enabled, Plush-M running without auto-
matic upgrade, and Plush executing over its default star
topology. We could not compare to Plush with the sim-
ple tree topology, since failure recovery that involves a
tree reconfiguration is not supported. As Figure 5 shows,
automatic upgrade in Plush-M was a major contributor
to the latency required for node reconnection. This was
largely due to the fact that the failed clients contacted
the software repository to verify that they had the latest

Plush-M client installed (as part of the automatic upgrade
mechanism) before rejoining the overlay.

Figure 5 also shows that with automatic upgrade en-
abled, as the number of participants increased, so did
the average reconnection time. This was expected, since
many PlanetLab nodes were running with high CPU
loads and had slow connectivity to the software version
server. With automatic upgrade disabled, the results are
much more promising. The average reconnection la-
tency using Plush-M and Plush was very close. For
Plush-M, the average reconnection time for overlays with
more than 12 participants took approximately 12 sec-
onds. When less than 12 nodes were involved, RandTree
created a tree with one level and all nodes directly link-
ing to the root. In this case the average time was about 8§
seconds. Plush running over its default star topology per-
formed consistently as the number of nodes increased,
with an average reconnect time of about 7 seconds. The
difference between Plush-M and Plush on larger overlays
is likely caused by the overhead of tree reconfiguration.
However, this overhead was relatively small (less than
7 seconds for all experiments), and did not seem to in-
crease significantly as the number of participants grew.

4.2.2 Failure Recovery on ModelNet

In Figure 6, we performed the same failure recovery ex-
periment on ModelNet. The goal again was to measure
how quickly Plush-M recovered and reconfigured after a
failure was detected. Note that we did not repeat the au-
tomatic upgrade experiment on ModelNet, since Plush-
M ran from a shared partition mounted on all emulated
hosts. A version check would be pointless in this case.
Our results show that the reconnection latency differ-
ence between Plush-M and Plush is less than 2 seconds
in most cases, and can again be explained by the over-
head associated with the tree reconfiguration during node
reconnections. Since variable wide-area network condi-
tions did not affect our results, the overhead of tree re-
configuration on ModelNet is must less significant than
the overhead of tree configuration on PlanetLab. This re-
sult bodes well for other large-scale cluster environments
that are not spread across the wide-area.

4.2.3 Tree-reconfiguration on PlanetLab

For our final experiment, we wanted to see how the struc-
ture of the tree affected the average reconnection latency
of a node. To test this, we ran a set of experiments
similar to the ones previously described. First, we used
Plush-M with the automatic upgrade feature enabled to
run “sleep” on PlanetLab using 100 overlay participants.
Then we killed the Plush-M clients on 25 participants.
The overlay detected the failure and tried to reconnect

10

120

PlUshM + Upgrade -

100 q
90 r q
80 - q
70 q

60 [B

Reconnection time (seconds)

50 q

30 I I I I I I I I
48 60 72 84 96

Max node degree

108

Figure 7: Effect of RandTree node degree on average
reconnection time after failure on PlanetLab.

the disconnected nodes. We measured the average time
of node reconnection, as before. We repeated this experi-
ment several times, varying the maximum out-degree al-
lowed in RandTree from 12 to 96. The results are shown
in Figure 7. As expected, the average reconnection time
decreased as the degree increased. This is due to the fact
that increasing the maximum degree allowed decreased
the depth of the overlay tree, and simplified tree recon-
figuration. Nevertheless, compared to the previous re-
sults, the reconnection time was still dominated by the
automatic upgrade mechanism.

5 Related Work

Since Plush-M is an extension of Plush, much of the
work that is related to Plush is also related to Plush-M.
In this section we revisit some of these projects, focusing
the discussion on fault tolerance and scalability.

In the context of remote job execution, Plush-M has
similar goals as cfengine [7] and gexec [9]. However,
since Plush-M can be used to actively monitor and man-
age a distributed application, and also supports automatic
failure recovery and reconfiguration, the functionality
provided by cfengine and gexec is only a subset of the
functionality provided by Plush-M. Like Plush, cfengine
defaults to using a star topology for communication, with
additional configuration support for constructing custom
topologies. This constructed topology typically reflects
the administrative needs of the network, and depending
on what topology is used, can impact scalability. gexec
relies on building an n-ary tree of TCP sockets, and prop-
agates control information up and down the tree. The
topology allows gexec to scale to over 1000 nodes, and
seems similar to the approach used in Plush-M.

SmartFrog [11] and the PlanetLab Application Man-
ager (appmanager) [13] are designed to manage dis-

tributed applications. SmartFrog is a framework for
building and deploying distributed applications. Smart-
Frog daemons running on each participating node work
together to manage distributed applications. Unlike
Plush-M, there is no central point of control in Smart-
Frog; work-flows are fully distributed and decentralized.
However, communication in SmartFrog is based on Java
RMI, which can become a bottleneck for large num-
bers of participants and long-lived connections. app-
manager is designed solely for managing long-running
PlanetLab services. It does not support persistent con-
nections among participants. Since it utilizes a simple
client-server model, it most closely resembles the Plush
star topology, and has similar scalability limitations. The
scalability also largely depends on the capacity of the
server and the number of simultaneous requests.

Condor [6] is a workload management system for
compute-bound jobs. Condor takes advantage of under-
utilized cycles on machines within an organization for
hosting distributed executions. The communication
topology of Condor uses a central manager which is di-
rectly connected to the machines in the resource pool,
constructing a star topology like Plush. The scale of
this design is limited by the constraints of the operating
system, such as file descriptor limits, similar to the star
topology in the original design of Plush.

6 Future Work

There are several aspects of the design of Plush-M that
warrant further exploration. We believe that our current
design has the ability to scale to thousands of machines,
which is required in today’s large-scale computing plat-
forms. However we are still somewhat dissatisfied with
the initial connection time for our overlay tree. We hope
that the heightened times are due to limitations in our
testing infrastructure rather than in the design of our sys-
tem. One of the disadvantages of using Plush and Mace
is that both systems attempt to hide the underlying com-
plexities of distributed applications from developers. In
this case, it would ease debugging if some of the under-
lying mechanisms were exposed.

In addition, we plan to evaluate the scalability and
fault tolerance of Plush-M on much larger topologies.
Thus far we have been limited by the unavailability of
physical cluster machines and PlanetLab resources to
host our experiments. We plan to gain access to larger
testbeds and perform more extensive testing. While we
are confident that our design will scale to much larger
topologies, we need to verify correct operation in a real-
istic large-scale computing environment. This will also
allow us to identify additional performance bottlenecks
that only appear when large numbers of participants are
present.

11

One last problem that we hope to address relates to
how failed nodes are handled in Plush-M and Mace. Cur-
rently, when a node fails repeatedly, Plush-M detects that
the node may be problematic and marks it as failed. This
prevents the control node from attempting to use the node
for future computations. However, Plush-M lacks the fa-
cility to indicate the failure to Mace. Hence, Mace con-
tinually attempts to reestablish the connection with the
failed node during every recovery cycle. By introduc-
ing an extension to Mace that allows Plush-M to mark
certain nodes as failed, we can significantly decrease the
traffic associated with overlay maintenance, thus improv-
ing performance.

7 Conclusion

Plush is an extensible distributed application manage-
ment infrastructure that does not provide adequate scal-
ability or fault tolerance for large-scale computing plat-
forms due to the design of its underlying communication
fabric. We sought to correct these issues and allow for
greater scalability and robustness without significantly
sacrificing functionality and performance. The result is
Plush-M, a modified version of Plush which replaces the
communication fabric with a tree-based overlay network
called RandTree. RandTree is built using Mace, a C++
language extension and source to source compiler for
building high-performance distributed systems.

Based on our experimentation thus far, we believe that
RandTree is a robust tree-based overlay network that al-
lows Plush-M to scale far beyond the limits of the orig-
inal Plush design. We believe that the performance bot-
tlenecks experienced are largely due to limitations in our
testing infrastructure. Further testing will allow us to
confirm these speculations. In addition, RandTree pro-
vides Plush-M with advanced failure recovery options,
including automatic failure detection and tree reconfigu-
ration. As a result, Plush-M provides a scalable and fault
tolerant solution for distributed application management
in large-scale computing environments.

References

[1] ALBRECHT,J., BRAUD, R., DAO, D., TOPILSKI, N., TUTTLE,
C., SNOEREN, A. C., AND VAHDAT, A. Remote Control: Dis-
tributed Application Configuration, Management, and Visualiza-
tion with Plush. In Proceedings of the USENIX Large Installation
System Administration Conference (LISA) (2007).

[2] ALBRECHT, J., TUTTLE, C., SNOEREN, A. C., AND VAH-
DAT, A. Loose Synchronization for Large-Scale Networked Sys-
tems. In Proceedings of the USENIX Annual Technical Confer-

ence (USENIX) (2006).

[3] ALBRECHT, J., TUTTLE, C., SNOEREN, A. C., AND VAHDAT,
A. PlanetLab Application Management Using Plush. ACM Op-

erating Systems Review (OSR) 40, 1 (2006).

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

BARHAM, P., DRAGoOvVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the Art of Virtualization. In Proceedings
of the ACM Symposium on Operating System Principles (SOSP)
(2003).

BAVIER, A., BOWMAN, M., CHUN, B., CULLER, D., KARLIN,
S., MUIR, S., PETERSON, L., ROSCOE, T., SPALINK, T., AND
WAWRZONIAK, M. Operating Systems Support for Planetary-
Scale Network Services. In Proceedings of the ACM/USENIX
Symposium on Networked Systems Design and Implementation
(NSDI) (2004).

BRICKER, A., LITZKOW, M., AND LIVNY, M. Condor Tech-
nical Summary. Tech. Rep. 1069, University of Wisconsin—
Madison, CS Department, 1991.

BURGESS, M. Cfengine: A Site Configuration Engine. USENIX
Computing Systems 8, 3 (1995).

CATLETT, C. The Philosophy of TeraGrid: Building an Open,
Extensible, Distributed TeraScale Facility. In Proceedings of the
IEEE International Symposium on Cluster Computing and the
Grid (CCGrid) (2002).

CHUN, B. gexec. http://www.theether.org/gexec/.

GARFINKEL, S. Commodity Grid and Computing with Ama-
zon’s S3 and EC2. ;login: (The USENIX Magazine) (Febuary
2007).

GOLDSACK, P., GUUARRO, J., LAIN, A., MECHENEAU, G.,
MURRAY, P., AND TOFT, P. SmartFrog: Configuration and Au-
tomatic Ignition of Distributed Applications. In HP Openview
University Association Conference (HP OVUA) (2003).

HUA CHU, Y., RAO, S. G., SESHAN, S., AND ZHANG, H. En-
abling Conferencing Applications on the Internet using an Over-
lay Multicast Architecture. In Proceedings of the ACM SIG-
COMM Conference (SIGCOMM) (2001).

HUEBScH, R. PlanetLab Application
http://appmanager.berkeley.intel-research.net.

Manager.

JANNOTTI, J., GIFFORD, D. K., JOHNSON, K. L., KAASHOEK,
F. M., AND O’TOOLE, J. W. Overcast: Reliable Multicasting
with an Overlay Network. In Proceedings of the ACM/USENIX
Symposium on Operating System Design and Implementation
(0OSDI) (2000).

KILLIAN, C., ANDERSON, J. W., BRAUD, R., JHALA, R., AND
VAHDAT, A. Mace: Language Support for Building Distributed
Systems. In Proceedings of Programming Languages Design and
Implementation (PLDI) (2007).

KILLIAN, C., ANDERSON, J. W., JHALA, R., AND VAHDAT, A.
Life, Death, and the Critical Transition: Finding Liveness Bugs
in Systems Code. In Proceedings of the ACM/USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI)
(2007).

KosTI¢, D., RODRIGUEZ, A., ALBRECHT, J., BHIRUD, A.,
AND VAHDAT, A. Using Random Subsets to Build Scalable Net-
work Services. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems (USITS) (2003).

KosTIC¢, D., RODRIGUEZ, A., ALBRECHT, J., AND VAHDAT,
A. Bullet: High Bandwidth Data Dissemination Using an Over-
lay Mesh. In Proceedings of the ACM Symposium on Operating
System Principles (SOSP) (2003).

PETERSON, L. L., BAVIER, A. C., FIUCZYNSKI, M. E., AND

MUIR, S. Experiences Building PlanetLab. In Proceedings of

the ACM/USENIX Symposium on Operating System Design and
Implementation (OSDI) (2006).

12

[20] VAHDAT, A., YocuM, K., WALSH, K., MAHADEVAN, P.,

KosTIC, D., CHASE, J., AND BECKER, D. Scalability and Ac-
curacy in a Large-Scale Network Emulator. In Proceedings of
the ACM/USENIX Symposium on Operating System Design and
Implementation (OSDI) (2002).

