Loose Synchronization for Large-Scale
Networked Systems

Jeannie Albrecht, Christopher Tuttle,
Alex C. Snoeren, and Amin Vahdat

June 3, 2006

UCSDCSE

Computer Science and Engineering

Introduction

« Challenge: Controlling distributed applications in

heterogeneous, failure-prone networked environments

— Distributed systems tend to be

—

volatile
— Unpredictable network congestion

— All hosts do not perform equally

Completed tasks

— Performance suffers due to small set
of slow hosts/links

« Contribution: Unified abstraction for managing
unpredictable failures and performance variation

— Detect slow/failed hosts, remap computations, etc.

Time

Bullet

[SOSP 03]
120 = ‘------“‘--:
(7] s:
+ 100 F :
o :
I ;
s 80 F :
g 60
=
=
C T} | :
50 hosts =
20 o 90 hosts
3 130 hosts ~ ====s===
O z [l z z z
0 5 10 15 20 25

Elapsed time (sec)

+ Overlay based file distribution
« 30+ seconds for 50/90/130 hosts to connect

30

EMAN

[JSB 99]

90 |
80 |
70 |
60 |
50 |
40 |
30 |
20 |

Tasks

10| Completed tasks

0O 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time (sec)

 Electron Micrograph Analysis
« 2700+ seconds to complete 98 tasks on 98 hosts

MapReduce

[OSDI 04]

450 1 "
400
350 T
300
250 t
200 1
150 T
100 1
50 T

0

Tasks

Completed tasks

0O 50 100 150 200 250 300 350 400 450 500
Elapsed time (sec)

« Application-specific data processing
« 2500+ seconds to complete 480 map tasks on 30 hosts

Application Characteristics

Bullet, EMAN, and MapReduce belong to a specific
class of applications
— Support mid-computation reconfiguration

— Support dynamically degrading computation

Some applications do not support reconfiguration
— Degrading computation may reduce accuracy

— Require specific number of hosts

For applications that support reconfiguration, we
improve performance by coping with stragglers

Dealing with Stragglers

- MapReduce explicitly dealt with stragglers
— Detected slow hosts and reallocated work to fast hosts

Work reallocated

Task count

200
150
100 No reallocation —
50 With reallocation——
O » » »

0 50 100150200 250300350400450500
Elapsed time (sec)

- Need a general technique for detecting stragglers
 Solution: Partial barriers

Synchronization Barriers

- Traditionally synchronization barriers have separated

different phases of computation in multi-processor
computing environments

— Ensure no process advances beyond a specified point until all
processes have reached that point

1 Phase 1 : Phase 2
o A > -—-—- - >
§ ‘ :
g B ?:! ————— >
i e
Time :

A arrivBmﬂmedmntinues
Distributed applications also benefit from barrier semantics

— Phased parallel computation

— Coordinated measurement

Barrier Drawbacks

Traditional semantics are too strict in failure-
prone distributed computing environments
— Machines fail and restart
— Network links become congested
— Hosts become overloaded

Progress is limited by pace of slowest participant
May wait indefinitely for failed hosts

Partial barriers relax traditional barrier semantics
to perform better in volatile distributed
environments

— Relaxed semantics are more robust to variable
network conditions

— Show improved performance in 4 applications

Partial Barrier Semantics

A— i- » Traditional barrier

B——] - * Hosts wait at barrier until all hosts
' have entered

* All hosts released simultaneously

C ———] ->

Problem: Stragglers delay overall progress

Solution: Early Entry
+ Hosts released from barrier without waiting for all other hosts to enter
« Applications set barrier release thresholds (min percentage, timeout)
* Must deal with late arrivals (late-fire or catch-up)

A P .I——)——————piu >
B > :j——b——————p; »
C el e e pereaaeas >

Release threshold = 75%
A arrivBsiiiye aatibmiRblbhRskisdcdvnthifisalbinoh dooopyiatadio ncookibinese s

Partial Barrier Semantics

A s——t--~+ Traditional barrier
B —--- * Hosts wait at barrier until all hosts
C - -~ have entered

i * All hosts released simultaneously

Problem: Simultaneously releasing all hosts causes overload
Solution: Throttled Release
* Hosts released from barrier at specified rate
 Application sets rate of release (# hosts / time interval)

AT
:f Y LV_L\
A : — = — e — = —— —»
B — et t e LT
C ——p i___.>§___.,

Rate =1 host / AT sec
dhebic GvddeBserleased

Partial Barrier Semantics

A s——t--~+ Traditional barrier
B —--- * Hosts wait at barrier until all hosts
C - -~ have entered

i * All hosts released simultaneously

Problem: Limited simultaneous resource availability

Solution: Semaphore Barrier
« Control number of hosts allowed in critical section

+ Application sets capacity of critical section

A :‘ i > N — =

B — e - - -
: :

C ——p > >

Critical section capacity = 2

iSlRE section

Adaptive Release

Static thresholds for release are not sufficient

— Adapt to changing conditions

Early entry — dynamically detect stragglers by
finding knee of completion curve

Semaphore barrier — dynamically determine
optimal capacity of critical section

Detecting Knees

1
kT
8 08 |
o
£
G 06 |
o
2 I |
° 0.4 :
— |
Y R I
O o I .
e 02 | | Host arrival
o ! | EWMA host arrival (arr) = = -
E I I Threshold
O | |))) |
0 5 10 15 20 25 30

Elapsed time (sec)

- Want to know when majority of hosts who will arrive quickly
have arrived

Critical Section Capacity

- Determine optimal capacity of critical section

— Dynamically adjust algorithm to find appropriate level of
concurrency

- Start with low concurrency
— Keep track of “release time” (time spent in critical section)

* Increase concurrency until conditions worsen
— Most recent median release time > Overall median release time

- Back off and repeat

A’s release time

,—H >
: =
| — - 1Y)
A :l—’l- > > é
B — L»[— - ‘g
C —— l—» §
V. m
©
R
- =
B’s release time O 14

ors . . 0 20 40 60 80 100
Critical section capacity =2 Elapsed time (sec)

Application Integration

- Easy to integrate into existing applications

- Partial barrier participants use simple API to customize
application behavior

- Participants specify barrier manager during initialization
« Manager coordinates communication across hosts

class Barrier {

Barrier (string name, int max, int timeout, int percent, int minWait);

static void setManager (string hostname);

void enter (string label, string hostname);

void setEnterCallback (
bool (*callbackFunc) (string label, string hostname, bool default),
int timeout);

map <string label, string hostname> getHosts (void);

o

Implementation Details

Barrier manager specified at startup by application
Hosts enter barrier and send BARRIER_REACHED messages to manager

Manager sends FIRE message when condition to release barrier is
achieved
Manager sends LATE-FIRE/CATCH-UP in response to late arrivals
— LATE-FIRE allows execution to continue immediately
— CATCH-UP allows app to reintegrate host later

— - Barrier
: Manager

Work Reallocation in EMAN

Images processed using sequential and parallel
computations

Barriers detect stragglers and reallocate work

90 |
80 |
70 |
60 |
50 |
40 |
30 |
20 |
10|

Task count

No reallocation
With reallocation ---====--

0O 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time (sec)

Detecting Knees in Bullet

+ Overlay based file distribution protocol

 Barrier used to determine when to start without waiting for
stragglers

--
»
unm®

120 " "lll.f
[7,]
£ 100 T
o
XL
5 80
3
= 60
=
2 40t
oy 50 hosts =
20 157 90 hosts
130 hosts ==sssuss
O . - A L .]

Elapsed time (sec)

Admission Control in Plush

[SIGOPS-OSR 06]

- Application management infrastructure for deploying and
maintaining distributed applications

« Barriers throttle the number of simultaneous file transfers

100 46 sec 153 sec 499 sec
i v

80 - ::. /-

‘. -

Host count
(@)
o

N
o

25 Simultaneous Transfers
100 Simultaneous Transfers

Adaptive Simultaneous Transfers --------.
10 Simultaneous Transfers — . =

O 100 200 300 400 500
Elapsed time (sec)

N
o

Related Work

Barriers first used for synchronization in parallel
programming [Jordan78]

Fuzzy barriers in SIMD programming allowed some
instructions to be run while waiting in barrier [Gupta89]

Knee detection in TCP retransmission timers and MONET
[Andersen05]

Detecting optimal level of concurrency in SEDA [Welsh01]

Use barrier arrival rate for scheduling and load balancing
in Implicit Coscheduling [Dusseau96]

Reallocate work in work-stealing schedulers like CILK
[Blumofe95]

Summary

« Partial barriers are a useful relaxation of the
traditional barrier synchronization primitive

— New semantics: early entry, throttled release,
semaphore barrier

— Designed for improved performance in volatile and
failure-prone environments

- Easy integration and decreased completion times
in existing distributed applications
— Plush, Bullet, EMAN, MapReduce
- Adaptive release is more effective than static
thresholds in distributed environments
— Ensures forward progress in unpredictable conditions

Questions?

ad
UCSDCSE

Computer Science and Engineering

Scalability

1.8

1.6 F

0.8 |

Time (sec)

06 :

| All hosts
) 90thlpercelnti|e e .

10 20 30 40 50 60 70 80 90 100
Number of hosts

Time to move between two barriers separated by no-op

Partial Barrier API

class Barrier {
Barrier (string name, int max, int timeout, int percent, int minWait);

static void setManager (string hostname);
void enter (string label, string hostname);
void setEnterCallback (
bool (*callbackFunc) (string label, string hostname, bool default),

int timeout);
map <string label, string hostname> getHosts (void);

class ThrottleBarrier extends Barrier {
void setThrottleReleasePercent (int percent);
void setThrottleReleaseCount (int count);
void setThrottleReleaseTimeout (int timeout);

Load Balancing in MapReduce

- Reimplementation of toolkit for application specific data
summarizing and processing

- Barrier detects stragglers and rebalances work in map
phase

450 T
400
350
300 |
250
200
150 T
100 T
50T

0

Task count

No reallocation
With reallocation=-=----

0O 50 100 150 200 250 300 350 400 450 500
Elapsed time (sec)

Dealing with Stragglers

- Need a general technique for detecting stragglers in
distributed applications

— Ease developers of burden of handling stragglers separately for
each application

— Detect “knee” of curve and adjust application

Bullet EMAN
120 0-- .. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 90
£ 100 P ! 801
(=] . . 70|
\II- 80 1 . . 1 w 60|
2) : : =< 50|
o 60T : . 1 S
Ne] . . =401
£ 40 : : 30 |
Z Y, : 50 hosts = | 201
PA K . 90 hosts ol
R . 130 hosts ***"* Completed tasks —
0 * * * * * 0 ‘ | ‘ ‘ ‘ ‘ '
0 5 10 15 20 25 30 0 400 800 1200 1600

Elapsed time (sec) Elapsed time (sec)

Revisiting EMAN

« Suppose early entry threshold = 60%
 Barrier is released too early
- How do we determine optimal threshold value?

20 |
80 |
70 |
60
50 |
40 |
30 |
20 |
10 |

Tasks

Completed tasks

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time (sec)

