
Loose Synchronization for LargeLoose Synchronization for Large--Scale Scale
Networked SystemsNetworked Systems

Jeannie Albrecht, Christopher Tuttle,
Alex C. Snoeren, and Amin Vahdat

June 3, 2006

2

• Challenge: Controlling distributed applications in
heterogeneous, failure-prone networked environments

– Distributed systems tend to be
volatile

– Unpredictable network congestion

– All hosts do not perform equally

– Performance suffers due to small set
of slow hosts/links

• Contribution: Unified abstraction for managing
unpredictable failures and performance variation

– Detect slow/failed hosts, remap computations, etc.

IntroductionIntroduction

Time

C
o

m
p

le
te

d
 t

as
ks

3

Bullet Bullet
[SOSP 03][SOSP 03]

• Overlay based file distribution
• 30+ seconds for 50/90/130 hosts to connect

0

20

40

60

80

100

120

0 5 10 15 20 25 30

N
u

m
b

er
 o

f H
o

st
s

Elapsed time (sec)

50 hosts
90 hosts

130 hosts

4

EMANEMAN
[JSB 99][JSB 99]

• Electron Micrograph Analysis
• 2700+ seconds to complete 98 tasks on 98 hosts

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800

Ta
sk

s

Elapsed time (sec)

Completed tasks

5

MapReduceMapReduce
[OSDI 04][OSDI 04]

• Application-specific data processing
• 2500+ seconds to complete 480 map tasks on 30 hosts

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450 500

Ta
sk

s

Elapsed time (sec)

Completed tasks

6

Application CharacteristicsApplication Characteristics

• Bullet, EMAN, and MapReduce belong to a specific
class of applications
– Support mid-computation reconfiguration

– Support dynamically degrading computation

• Some applications do not support reconfiguration
– Degrading computation may reduce accuracy

– Require specific number of hosts

• For applications that support reconfiguration, we
improve performance by coping with stragglers

7

0
50

100
150
200
250
300
350
400
450

0 50 100 150 200 250 300 350 400 450 500

Ta
sk

 c
o

u
n

t

Elapsed time (sec)

No reallocation
With reallocation

Dealing with StragglersDealing with Stragglers
• MapReduce explicitly dealt with stragglers

– Detected slow hosts and reallocated work to fast hosts

Work reallocated

• Need a general technique for detecting stragglers
• Solution: Partial barriers

8

Synchronization BarriersSynchronization Barriers
• Traditionally synchronization barriers have separated

different phases of computation in multi-processor
computing environments

– Ensure no process advances beyond a specified point until all
processes have reached that point

A

B

C

D

• Distributed applications also benefit from barrier semantics
– Phased parallel computation

– Coordinated measurement

A arrives at barrier and blocksB arrives at barrier and blocksC arrives at barrier and blocksD arrives at barrierBarrier releasedComputation continues

Time

Pr
oc

es
so

rs

Phase 1 Phase 2

9

Barrier DrawbacksBarrier Drawbacks

• Traditional semantics are too strict in failure-
prone distributed computing environments
– Machines fail and restart
– Network links become congested
– Hosts become overloaded

• Progress is limited by pace of slowest participant
• May wait indefinitely for failed hosts
• Partial barriers relax traditional barrier semantics

to perform better in volatile distributed
environments
– Relaxed semantics are more robust to variable

network conditions
– Show improved performance in 4 applications

10

A

B

C

D

Partial Barrier SemanticsPartial Barrier Semantics
Traditional barrier

• Hosts wait at barrier until all hosts
have entered

• All hosts released simultaneously

Problem: Stragglers delay overall progress
Solution: Early Entry

• Hosts released from barrier without waiting for all other hosts to enter
• Applications set barrier release thresholds (min percentage, timeout)
• Must deal with late arrivals (late-fire or catch-up)

A
B
C
D

A arrives at barrier and blocksB arrives at barrier and blocksA,B,C arrive at barrier and blockD arrives at barrierBarrier releasedD receives late-fire and computation continuesD receives catchup and computation continues
Release threshold = 75%

11

A

B

C

D

Partial Barrier SemanticsPartial Barrier Semantics
Traditional barrier

• Hosts wait at barrier until all hosts
have entered

• All hosts released simultaneously

Problem: Simultaneously releasing all hosts causes overload
Solution: Throttled Release

• Hosts released from barrier at specified rate
• Application sets rate of release (# hosts / time interval)

A
B
C
D

A arrives at barrier and blocksB arrives at barrier and blocksC arrives at barrier and blocksA,B,C,D arrive at barrier and blockBarrier releases AAfter ∆T seconds, B releasedAfter ∆T seconds, C releasedAfter ∆T seconds, D released

∆T ∆T ∆T

Rate = 1 host / ∆T sec

12

A

B

C

D

Partial Barrier SemanticsPartial Barrier Semantics
Traditional barrier

• Hosts wait at barrier until all hosts
have entered

• All hosts released simultaneously

Problem: Limited simultaneous resource availability
Solution: Semaphore Barrier

• Control number of hosts allowed in critical section
• Application sets capacity of critical section

A
B
C
D

Critical section capacity = 2

A arrives at barrier and blocksB arrives at barrier and blocksC arrives at barrier and blocksA,B,C,D arrives at barrier and blocksBarrier releases A & BA & B in critical sectionB finishesA & C in critical sectionA finishesC & D in critical section

13

Adaptive ReleaseAdaptive Release
• Static thresholds for release are not sufficient

– Adapt to changing conditions

• Early entry – dynamically detect stragglers by

finding knee of completion curve

• Semaphore barrier – dynamically determine

optimal capacity of critical section

14

Detecting KneesDetecting Knees

• Want to know when majority of hosts who will arrive quickly
have arrived

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

P
er

ce
n

t
o

f h
o

st
s

re
ac

h
in

g
 b

ar
ri

er

Elapsed time (sec)

Host arrival

Threshold
EWMA host arrival (arr)

15

Critical Section CapacityCritical Section Capacity
• Determine optimal capacity of critical section

– Dynamically adjust algorithm to find appropriate level of
concurrency

• Start with low concurrency
– Keep track of “release time” (time spent in critical section)

• Increase concurrency until conditions worsen
– Most recent median release time > Overall median release time

• Back off and repeat

14

16

18

20

22

24

26

28

0 20 40 60 80 100

C
ri

ti
ca

l S
ec

ti
o

n
 C

ap
ac

it
y

Elapsed time (sec)Critical section capacity = 1
B’s release time

A’s release time

A

B

C

D

Critical section capacity = 2

16

Application IntegrationApplication Integration
• Easy to integrate into existing applications
• Partial barrier participants use simple API to customize

application behavior
• Participants specify barrier manager during initialization
• Manager coordinates communication across hosts

class Barrier {
Barrier (string name, int max, int timeout, int percent, int minWait);
static void setManager (string hostname);
void enter (string label, string hostname);
void setEnterCallback (

bool (*callbackFunc) (string label, string hostname, bool default),
int timeout);

map <string label, string hostname> getHosts (void);
}

17

Implementation DetailsImplementation Details
• Barrier manager specified at startup by application
• Hosts enter barrier and send BARRIER_REACHED messages to manager
• Manager sends FIRE message when condition to release barrier is

achieved
• Manager sends LATE-FIRE/CATCH-UP in response to late arrivals

– LATE-FIRE allows execution to continue immediately
– CATCH-UP allows app to reintegrate host later

Barrier
Manager

D

A

B

C

BARRIER_REACHED

BARRIER_REACHED

BARRIER_REACHEDBARRIER_REACHED

FIRE

FIRE

FIRE

LATE-FIRE

A

B

C

D

18

Work Reallocation in EMANWork Reallocation in EMAN

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800

Ta
sk

 c
o

u
n

t

Elapsed time (sec)

No reallocation
With reallocation

• Images processed using sequential and parallel
computations

• Barriers detect stragglers and reallocate work

19

Detecting Knees in BulletDetecting Knees in Bullet

0

20

40

60

80

100

120

0 5 10 15 20 25 30

N
u

m
b

er
 o

f H
o

st
s

Elapsed time (sec)

50 hosts
90 hosts

130 hosts

• Overlay based file distribution protocol
• Barrier used to determine when to start without waiting for

stragglers

20

Admission Control in PlushAdmission Control in Plush
[SIGOPS[SIGOPS--OSR 06]OSR 06]

0

20

40

60

80

100

0 100 200 300 400 500

H
o

st
 c

o
u

n
t

Elapsed time (sec)

25 Simultaneous Transfers
100 Simultaneous Transfers

Adaptive Simultaneous Transfers
10 Simultaneous Transfers

• Application management infrastructure for deploying and
maintaining distributed applications

• Barriers throttle the number of simultaneous file transfers
46 sec 153 sec 402 sec 499 sec

21

Related WorkRelated Work

• Barriers first used for synchronization in parallel
programming [Jordan78]

• Fuzzy barriers in SIMD programming allowed some
instructions to be run while waiting in barrier [Gupta89]

• Knee detection in TCP retransmission timers and MONET
[Andersen05]

• Detecting optimal level of concurrency in SEDA [Welsh01]

• Use barrier arrival rate for scheduling and load balancing
in Implicit Coscheduling [Dusseau96]

• Reallocate work in work-stealing schedulers like CILK
[Blumofe95]

22

SummarySummary

• Partial barriers are a useful relaxation of the
traditional barrier synchronization primitive
– New semantics: early entry, throttled release,

semaphore barrier
– Designed for improved performance in volatile and

failure-prone environments

• Easy integration and decreased completion times
in existing distributed applications
– Plush, Bullet, EMAN, MapReduce

• Adaptive release is more effective than static
thresholds in distributed environments
– Ensures forward progress in unpredictable conditions

23

Questions?Questions?

24

ScalabilityScalability

• Time to move between two barriers separated by no-op

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Number of hosts

All hosts
90th percentile

25

Partial Barrier APIPartial Barrier API

class Barrier {
Barrier (string name, int max, int timeout, int percent, int minWait);
static void setManager (string hostname);
void enter (string label, string hostname);
void setEnterCallback (

bool (*callbackFunc) (string label, string hostname, bool default),
int timeout);

map <string label, string hostname> getHosts (void);
}

class ThrottleBarrier extends Barrier {
void setThrottleReleasePercent (int percent);
void setThrottleReleaseCount (int count);
void setThrottleReleaseTimeout (int timeout);

}

26

Load Balancing in Load Balancing in MapReduceMapReduce

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450 500

Ta
sk

 c
o

u
n

t

Elapsed time (sec)

No reallocation
With reallocation

• Reimplementation of toolkit for application specific data
summarizing and processing

• Barrier detects stragglers and rebalances work in map
phase

27

0

20

40

60

80

100

120

0 5 10 15 20 25 30

N
u

m
b

er
 o

f H
o

st
s

Elapsed time (sec)

50 hosts
90 hosts

130 hosts
0

10
20
30
40
50
60
70
80
90

0 400 800 1200 1600

Ta
sk

s

Elapsed time (sec)

Completed tasks

Dealing with StragglersDealing with Stragglers
• Need a general technique for detecting stragglers in

distributed applications
– Ease developers of burden of handling stragglers separately for

each application
– Detect “knee” of curve and adjust application

Bullet EMAN

28

Revisiting EMANRevisiting EMAN

• Suppose early entry threshold = 60%
• Barrier is released too early
• How do we determine optimal threshold value?

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800

T
as

ks

Elapsed time (sec)

Completed tasks

