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Introduction

« Challenge: Controlling distributed applications in

heterogeneous, failure-prone networked environments

— Distributed systems tend to be

—

volatile
— Unpredictable network congestion

— All hosts do not perform equally

Completed tasks

— Performance suffers due to small set
of slow hosts/links

« Contribution: Unified abstraction for managing
unpredictable failures and performance variation

— Detect slow/failed hosts, remap computations, etc.
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+  Overlay based file distribution
« 30+ seconds for 50/90/130 hosts to connect
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 Electron Micrograph Analysis
« 2700+ seconds to complete 98 tasks on 98 hosts



MapReduce
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« Application-specific data processing
« 2500+ seconds to complete 480 map tasks on 30 hosts



Application Characteristics

Bullet, EMAN, and MapReduce belong to a specific
class of applications
— Support mid-computation reconfiguration

— Support dynamically degrading computation

Some applications do not support reconfiguration
— Degrading computation may reduce accuracy

— Require specific number of hosts

For applications that support reconfiguration, we
improve performance by coping with stragglers



Dealing with Stragglers

- MapReduce explicitly dealt with stragglers
— Detected slow hosts and reallocated work to fast hosts

Work reallocated

Task count

200
150
100 No reallocation —
50 With reallocation——
O » » »

0 50 100150200 250300350400450500
Elapsed time (sec)

- Need a general technique for detecting stragglers
 Solution: Partial barriers



Synchronization Barriers

- Traditionally synchronization barriers have separated

different phases of computation in multi-processor
computing environments

— Ensure no process advances beyond a specified point until all
processes have reached that point
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Distributed applications also benefit from barrier semantics

— Phased parallel computation

— Coordinated measurement



Barrier Drawbacks

Traditional semantics are too strict in failure-
prone distributed computing environments
— Machines fail and restart
— Network links become congested
— Hosts become overloaded

Progress is limited by pace of slowest participant
May wait indefinitely for failed hosts

Partial barriers relax traditional barrier semantics
to perform better in volatile distributed
environments

— Relaxed semantics are more robust to variable
network conditions

— Show improved performance in 4 applications



Partial Barrier Semantics

A— i- »  Traditional barrier

B——] - * Hosts wait at barrier until all hosts
' have entered

* All hosts released simultaneously

C ———] ->

Problem: Stragglers delay overall progress

Solution: Early Entry
+ Hosts released from barrier without waiting for all other hosts to enter
« Applications set barrier release thresholds (min percentage, timeout)
* Must deal with late arrivals (late-fire or catch-up)
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Partial Barrier Semantics

A s——t--~+ Traditional barrier
B —--- * Hosts wait at barrier until all hosts
C - -~ have entered

i * All hosts released simultaneously

Problem: Simultaneously releasing all hosts causes overload
Solution: Throttled Release
* Hosts released from barrier at specified rate
 Application sets rate of release (# hosts / time interval)
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Partial Barrier Semantics

A s——t--~+ Traditional barrier
B —--- * Hosts wait at barrier until all hosts
C - -~ have entered

i * All hosts released simultaneously

Problem: Limited simultaneous resource availability

Solution: Semaphore Barrier
« Control number of hosts allowed in critical section

+ Application sets capacity of critical section
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Adaptive Release

Static thresholds for release are not sufficient

— Adapt to changing conditions

Early entry — dynamically detect stragglers by
finding knee of completion curve

Semaphore barrier — dynamically determine
optimal capacity of critical section



Detecting Knees
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- Want to know when majority of hosts who will arrive quickly
have arrived



Critical Section Capacity

- Determine optimal capacity of critical section

— Dynamically adjust algorithm to find appropriate level of
concurrency

- Start with low concurrency
— Keep track of “release time” (time spent in critical section)

* Increase concurrency until conditions worsen
— Most recent median release time > Overall median release time

- Back off and repeat
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Application Integration

- Easy to integrate into existing applications

- Partial barrier participants use simple API to customize
application behavior

- Participants specify barrier manager during initialization
«  Manager coordinates communication across hosts

class Barrier {

Barrier (string name, int max, int timeout, int percent, int minWait);

static void setManager (string hostname);

void enter (string label, string hostname);

void setEnterCallback (
bool (*callbackFunc) (string label, string hostname, bool default),
int timeout);

map <string label, string hostname> getHosts (void);



o

Implementation Details

Barrier manager specified at startup by application
Hosts enter barrier and send BARRIER_REACHED messages to manager

Manager sends FIRE message when condition to release barrier is
achieved
Manager sends LATE-FIRE/CATCH-UP in response to late arrivals
— LATE-FIRE allows execution to continue immediately
— CATCH-UP allows app to reintegrate host later

— - Barrier
: Manager




Work Reallocation in EMAN

Images processed using sequential and parallel
computations

Barriers detect stragglers and reallocate work
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Detecting Knees in Bullet

+ Overlay based file distribution protocol

 Barrier used to determine when to start without waiting for
stragglers
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Admission Control in Plush

[SIGOPS-OSR 06]

- Application management infrastructure for deploying and
maintaining distributed applications

« Barriers throttle the number of simultaneous file transfers
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Related Work

Barriers first used for synchronization in parallel
programming [Jordan78]

Fuzzy barriers in SIMD programming allowed some
instructions to be run while waiting in barrier [Gupta89]

Knee detection in TCP retransmission timers and MONET
[Andersen05]

Detecting optimal level of concurrency in SEDA [Welsh01]

Use barrier arrival rate for scheduling and load balancing
in Implicit Coscheduling [Dusseau96]

Reallocate work in work-stealing schedulers like CILK
[Blumofe95]



Summary

« Partial barriers are a useful relaxation of the
traditional barrier synchronization primitive

— New semantics: early entry, throttled release,
semaphore barrier

— Designed for improved performance in volatile and
failure-prone environments

- Easy integration and decreased completion times
in existing distributed applications
— Plush, Bullet, EMAN, MapReduce
- Adaptive release is more effective than static
thresholds in distributed environments
— Ensures forward progress in unpredictable conditions



Questions?
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Scalability
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Partial Barrier API

class Barrier {
Barrier (string name, int max, int timeout, int percent, int minWait);

static void setManager (string hostname);
void enter (string label, string hostname);
void setEnterCallback (
bool (*callbackFunc) (string label, string hostname, bool default),

int timeout);
map <string label, string hostname> getHosts (void);

class ThrottleBarrier extends Barrier {
void setThrottleReleasePercent (int percent);
void setThrottleReleaseCount (int count);
void setThrottleReleaseTimeout (int timeout);



Load Balancing in MapReduce

- Reimplementation of toolkit for application specific data
summarizing and processing

- Barrier detects stragglers and rebalances work in map
phase
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Dealing with Stragglers

- Need a general technique for detecting stragglers in
distributed applications

— Ease developers of burden of handling stragglers separately for
each application

— Detect “knee” of curve and adjust application

Bullet EMAN
120 0-- .. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 90
£ 100 P ! 801
(=] . . 70|
\II- 80 1 . . 1 w 60|
2) : : =< 50|
o 60T : . 1 S
Ne] . . =401
£ 40 : : 30 |
Z Y, : 50 hosts = | 201
PA K . 90 hosts ol
R . 130 hosts ***"* Completed tasks —
0 * * * * * 0 ‘ | ‘ ‘ ‘ ‘ '
0 5 10 15 20 25 30 0 400 800 1200 1600

Elapsed time (sec) Elapsed time (sec)



Revisiting EMAN

« Suppose early entry threshold = 60%
 Barrier is released too early
- How do we determine optimal threshold value?
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