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Abstract. Although a number of solutions exist for subtasks of apfiliicade-
ployment and monitoring in large-scale, distributed emwiments, few tools pro-
vide a unified framework for distributed application managat. Many of the
existing tools address the management needs of a singkedaflapplications or
services that run in a specific environment and are not eikiensnough to be
used for other applications. In this paper, we discuss tedend implementa-
tion of Plush, a fully configurable application control ia$tructure designed to
meet the general requirements of several different clazfséistributed applica-
tions. The paper discusses how users specifically defineti@ficontrol needed
using application building blocks provided by Plush. Wenakske a closer look
at a few specific distributed applications to gain an undeding of how Plush
provides support for each.
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1 Introduction

Installing, configuring, and executing a distributed apgion on federated computa-
tion infrastructures such as PlanetLab [3,18] and the Gk [s currently a time-
consuming and error-prone process. After the initial camfigjon, the application must
address the inevitable failures endemic to such enviromsnkelence, applications must
be carefully monitored and controlled to ensure continysatation and sustained per-
formance. Operators in charge of deploying and managingethagplications face a
daunting list of challenges: appropriate computing resesimust be discovered and ac-
quired, files distributed, and each machine appropriatjigured (and re-configured
when operating conditions change). It is not surprisingntithat a number of tools have
been developed to address various aspects of the procés® bolution has yet been
presented that flexibly automates the application deployrued management process.

Presently, most applications that successfully expleitédsources available in these
heterogeneous distributed environments take one of twooappes. On PlanetLab,
most researchers and service operators address deplogmémntonitoring in arad
hoc, application-specific fashion. Grid researchers, on thertand, leverage one or
more toolkits for application development and deploymé&nstom implementations
like those employed on PlanetLab vary greatly in their ssfidation, but all share
the same shortcoming: they must be rewritten when appdicatquirements or net-
work conditions change. Conversely, while Grid toolkitdid® significant function-
ality, they require tight integration with not only the ia8tructure, but the application
itself. Hence, applications must generally be customaildor a given toolkit.

We present Plush, a framework of tools that, when taken bheggprovide a unified
environment to support the distributed application desigd deployment life cycle.



Plush users describe distributed applications using amsitile XML specification lan-
guage. Unlike typical Grid systems, however, the langudigeva users to customize
various aspects of the deployment life cycle to fit the neddmapplication and its
target infrastructure. This functionality can be used gicample, to specify a particular
resource discovery or allocation tool to use during appticedeployment. In addition,
Plush provides extensive failure management support tonaatically adapt to fail-
ures in both the application and the underlying computafiorirastructure. Critically,
applications do not need to be written to a specific API; imdtdPlush interacts with
applications through standard POSIX process-controhtigcies.

Plush manages resource discovery and acquisition, s@ftehiatribution, and pro-
cess execution in a fully configurable fashion. Users desdfieir applications using
combinations of Plush “blocks” that define a custom conta/flOnce an application
is running, Plush monitors it for failures or applicatiaw¢l errors for the duration of its
execution. Upon detecting a problem, Plush can perform euwf user-configurable
recovery actions, such as restarting the application,naatically reconfiguring it, or
even searching for alternate resources. For applicateqsining wide-area synchro-
nization, Plush provides several efficient synchronizgpiomitives. In particular, Plush
provides two new barrier semantics, which relax traditidrearier semantics for in-
creased performance and robustness in failure-pronecemagnts.

The remainder of this paper discusses the architectureushPWe motivate the
design in Section 2 by enumerating a set of general requitesrier managing dis-
tributed applications. Section 3 details the design andémpntation of Plush, and
Section 4 discusses how we address fault tolerance andaital&Ve provide specific
application case studies and uses of Plush in Section 5évdfscussing related work
in Section 6, and wrapping up in Section 7.

2 Application controller requirements

The low-level details for managing distributed applicaiacdepend on the character-
istics of the target application. For example, short-liegnplications and network ex-
periments prefer powerful machines and abort when failaresletected, long-running
services prefer reliable machines and attempt to sileatigver from failures, and Grid
applications prefer powerful machines and need the ahilitdetect both slow and
failed machines. But at a high level, the requirements fohexample are largely sim-
ilar. Rather than reinvent the same infrastructure for equgilication separately, we set
out to identify commonalities across all classes of distield applications, and build an
application control infrastructure that supports the gahequirements of each.
Application Specification. A generic application controller must allow the user to
customize control flow for each application. Thapplication specificationdentifies
all aspects of the execution and environment needed to ssfadly deploy, manage,
and maintain the application. It describes the softwaraired to run the application—
including how to access and install it—and processes thiatwvi on each machine.
To support a variety of environments, the application dption language should be
extensible so that it is easy to add environment specifidldétdesired. The language
must also be able to define detailed resource specificatimtsding how the resources
should be acquired and any credentials required for alti&iuon or authorization.



The complexity of distributed applications varies gredigm simple, single-
process applications to complex, parallel applicatiorsisT an application controller
must support arbitrary process inter-dependencies. &iacg applications require syn-
chronization across machines, the application specificdtinguage should also de-
scribe application synchronization requirements. Sirlyiléhe ability to distribute com-
putations among pools of machines requires a way to speeifyriflow—a collection
of tasks that must be completed in a given order—within ariegpon specification.
In addition to all of these requirements, the applicatioacfication language must be
simple enough for users to understand, yet expressive @rtougn complex scenarios.

Resource Discovery and AcquisitionThe first step to successfully running any
distributed application is obtaining access to a suitabl@bresources.g., machines)
on which to run. Because resources in distributed enviranisnare heterogeneous,
users naturally want to find a resource set to best satisfyetipgirements of their ap-
plications. Even if hardware is largely homogeneous, dyoamaracteristics of a host
such as available bandwidth or CPU load vary greatly ovee tifine goal of resource
discovery is to find the besurrentset of physical resources for the distributed appli-
cation as specified by the user.

Resource discovery often interacts directly with reso@oguisition systems. Re-
source acquisition involves obtaining a lease or permissiaise the desired resources.
Acquisition can be accomplished in a number of ways. For gtanif advanced re-
source reservations are required, such as in a batch pewsksburce acquisition mech-
anism is responsible for submitting a resource request erugier's behalf and sub-
sequently obtaining a lease from the scheduler. Some emaieats may not require
advanced reservations for use, and therefore do not reggitiional steps for acquisi-
tion. In local site clusters, the application control irdiraicture may implement its own
scheduling mechanism.

Application Deployment. Once a set of resources have been located, the next step
involves preparing the physical resources with the coseftivare and data files, and
then running the executable to start the application. Tivislves copying, unpacking,
and installing the software on the target hosts. The systesst imandle a variety of
different file transfer protocols for each environment, amgsst react to failures that
occur during the transfer of software or in starting indivatiexecutables.

One important aspect of application deployment is ensuhiatthe correct number
of resources are running compatible versions of the redudoftware. Ensuring that
a minimum number of hosts are available for a distributed matation may involve
requesting new resources from the resource discovery aquisition phase to com-
pensate for failures that occur at startup. Further, mapliaions require some form
of loose synchronization across hosts to guarantee thimusaphases of computation
start at approximately the same time.

Application Maintenance. Perhaps the most difficult requirement for managing
distributed applications is monitoring an applicatioreait has been started. Monitor-
ing involves probing the hosts for failure due to networkams or hardware malfunc-
tions, querying the application for indications of failuhering execution, and providing
hooks into application-specific code for observing the peeg of an execution. This al-
lows for much more specific error reporting, which simplifiles debugging process for



users. The goal of application maintenance is to maintgitiegtion liveness, provide
detailed error information, and achieve forward progradbé face of failures.

In some cases, system failures may result in a situationendygplication require-
ments can no longer be met. For example, if an applicationiiilly configured to
be deployed on 50 machines, but only 48 can be contacted atancpoint in time,
the application controller should contact the user, angh#sible, adapt the application
appropriately to continue executing with only 48 machir&gmilarly, different appli-
cations have different policies with respect to failureonegry. Some applications may
be able to simply restart a failed process on a single hoskewthers may require the
entire execution to be aborted across all hosts.

3 Design and implementation

Given the requirements presented in Section 2, we now desBush, an extensible
application controller for large-scale distributed sys$e The hosts involved in a Plush-
managed application form a peer-to-peer overlay networle @erlay participant, the
controller, parses user input and sends messages on behalf of the tiserémaining
participants, thelients The controller, typically run from the user’s workstatjdirects
the flow of control throughout the life of the distributed dipation. The clients run on
machines spread across the network, and perform actioad basnstructions received
from the controller.

Figure 1(a) shows an overview of the Plush controller aechitré. The architecture
consists of three main sub-systems: the application spatidh, core functional units,
and user interface. Plush parses the application spemfidatstore data structures and
objects specifically defined by the user. The core functianiék then manipulate and
act on the objects defined by the application specificatiomutothe application. The
functional units also store authentication informatiolnitor physical machines, han-
dle event and timer actions, and maintain the communicatfoastructure that enables
the hosts to query the status of the distributed applicalibe user interface subsystem
provides users with the functionality to interact with thber parts of the architecture,
allowing the user to maintain and manipulate the applicedioring execution.

3.1 Application specification

One requirement for controlling a distributed applicatisrmaintaining the control

flow, defined in the Plush application specification. Devilgma complete, yet acces-
sible, specification description was one of the significdrallenges in this work. Our

approach, which has evolved over the past two years, cerdfisombinations of five

different abstractions or blocks:

1. Process blocks The processes executed on remote hosts. The processtibstra
includes parameters, path variables, runtime environmhetails, file and process
I/0O information, and the specific commands needed to staid@eps.

! Although we do not include a detailed overview of the clierhétecture, the client architec-
ture is symmetric to the controller with only minor diffeis in functionality.
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Fig. 1. (@) The architecture of Plush. A box shown above another bdicates that the top box
requires the functionality provided by the lower box for sessful operation. (b) Example file dis-
tribution application comprised of application, compongmocess, and barrier blocks in Plush.

. Barrier blocks - Barriers synchronize the various phases of executioninvih
distributed application.

. Workflow blocks - The flow of data in a distributed computation, including how
the data should be processed. Workflow blocks may contaioegsoand barrier
blocks. For example, a workflow block might describe a setnpiut files over
which a given process or barrier block will iterate duringeution.

. Component blocks- The groups of physical resources required to run the agplic
tion. This includes expectations specific to a set of metticghe case of compute
nodes, for example, these metrics might include requirésnfem load and free
memory. Components also define required software confignstinstallation in-
structions, and any authentication information neededc¢ess the resources. Com-
ponent blocks may contain workflow blocks, process blockd,kzarrier blocks.

. Application blocks - High-level information about a distributed applicatidrhis
includes one or many component blocks, as well as attritiotdgelp automate
failure recovery.

To better illustrate the use of these blocks in Plush, camdidilding the speci-
fication for the simple file distribution application showmFigure 1(b). This simple
application consists of two groups of machines. One grotipaserver machines that
store the files, and the second group is the receiving clierdhines that need to get
the files from the servers. The goal of the application is foeexnent with the use of
an overlay network to send files from the source to the recgiclients using some
new file distribution protocol. In this example, all sendansl receivers must join the
overlay before any transfers begin. Also, the servers nmegtape the files for transfer
before the receivers can start.

The first step in building the corresponding applicationcgfeation in Plush is
to define an application block. The application block defigpscific characteristics
including the general liveness properties of the apphbeativhich help to determine
the default behaviors to take during failure recovery. s Example, we choose the



default behavior of “restart-on-failure,” which attempdsrestart the failed application
instance on a single host, since it is not necessary to dhertrtire application if a
single failure occurs.

The application block also describes the groups of ressufee, physical ma-
chines) required to run the application, encoded as comydmecks. The application
consists of a set of servers and a set of clients, and twoaepasmponent blocks de-
scribe the two groups of machines. The server componerk bigiines the location and
installation instructions for the server software, andudes authentication information
required to access the resources. Similarly, the clienppcorant block defines the client
software package. In our example, for instance, it may beat#s to require that all
machines in the server group have a processor speed oftal [B&kz. Machine-specific
requirements are specified in component blocks.

Within each component block, a combination of workflow, pe& and barrier
blocks describe the computation that will occur on each rim&chn the set. Though
workflow blocks are not used in our example, workflow blocks ased in applica-
tions where data files must be distributed and iterativebgpssed. We will consider an
example employing a workflow block in Section 5.

Plush process blocks describe the specific commands redaiexecute the appli-
cation. Most process blocks depend on the successfullatstal of software packages
defined in the component blocks. Users specify the commatplsred to start a given
process, and actions to take upon process exit. The extipelkreate a Plugbrocess
monitor that oversees the execution of a specific process. Our egaidefihes several
process blocks. In the server component, process blocksedefocesses for prepar-
ing the files, joining the overlay, and sending the files. &y, the client component
contains process blocks for joining the overlay and reoegitine files.

Some applications operate in phases, producing outpuiriilesrly stages that are
used as input files in later stages. To ensure all hosts stelnt ghase of computation
only after the previous phase has completed, barrier bidefise loose synchronization
semantics between process and workflow blocks. In our exgrafdarrier ensures that
all clients and servers join the overlay before beginnirgfile transfer. Notice that al-
though each barrier block is uniquely defined within the congmt block, it is possible
for the same barrier to be referenced in multiple componktids. For our example,
both barrier blocks refer to the same barrier, which meaasttie application will wait
for all clients and servers to reach theotstrap _barrier  before allowing either
component to start sending or receiving files.

We designed the Plush application specification to suppwudriety of execution
patterns. With the blocks described above, Plush suppoetatbitrary combination
of processes, barriers, and workflows, provided that the éibeontrol between them
forms a directed acyclic graph. Using predecessor and ssocéags in Plush, users
specify the flow of control and define whether processes rparallel or sequentially.
Internally, Plush stores the blocks in a hierarchical datecture, and references specific
blocks in a manner similar to referencing absolute pathsfileaystem. Figure 1(b)
shows the unique path names for each block from our file Higion example. Plush
also simplifies coordination among remote hosts, since leastmaintains an identical
local copy of the application specification.



3.2 Core functional units

In addition to the abstractions defined by the user withinayelication specification,
Plush contains a core set of functional units that perfomrogherations required for the
remaining requirements outlined in Section 2. These ungshown as shaded boxes
below the dotted line in Figure 1(a). The functional unitavipalate the objects defined
in the application specification to manage distributed i@pfibns.

Starting at the highest level, the Plugilsource discovery and acquisitiorunit uses
the resource requirements in the component blocks to loeateirces on behalf of the
user. The resource discovery and acquisition unit is resptnfor obtaining a valid
set, called a matching, of resources that meet the applicatiemand. To determine
this matching, Plush may either call an existing externalise, such as SWORD [17]
or MDS [1], or use a simple internal default matcher. All lsoistvolved in an applica-
tion run a Plusthost monitor that periodically publishes information about the host.
The resource discovery and acquisition unit may use tharindtion to find the best
matching. Upon acquiring a resource, a Plostource managerstores the lease, to-
ken, or any necessary user credential needed for accebaingsource to allow Plush
to perform actions on behalf of the user in the future.

The remaining functional units in Figure 1(a) are respdeditr application deploy-
ment and maintenance. These units are used to connect toeespinstall the required
software, start the execution, and monitor the executiorfdibures. One important
functional unit used for these operations is the Plpattial barrier abstraction. Tra-
ditional barriers [14] are not well suited for volatile, veichrea network conditions; the
semantics are simply too strict. In order to achieve beésitience in the presence of
failures, Plush extends traditional barrier semantich wito new relaxations. The first
relaxation primitive early entry allows hosts that reach a barrier to be released before
all hosts have arrived, and thus enter a “critical sectidréativity early. This prevents
progress from stalling due to a small subset of delayed hdsis second primitive,
throttled releaseallows the user to control the rate of release from a barfieese
relaxed barrier semantics target distributed applicatiwilling to tolerate less strict
synchronization guarantees to achieve better performance

Figure 2 shows part of the Plush partial barrier APl. Whenniledi a barrier, the
application specifies the barrier's name, the maximum nurobleosts expected to ar-
rive at the barrier, the amount of time the application stawit for additional hosts
to arrive, the percentage of hosts required for correctreess the minimum amount
of time to wait before releasing a barrier early. These \&@hllow the barrier manager
(who is also the Plush controller) to perform early entryisTrimitive is especially
useful, for example, if there is a failure that causes a netwartition. Rather than wait
an infinite amount of time for the remaining hosts to arrivéhatbarrier, the early en-
try primitive will release the hosts that have already @diand thus continue to make
progress even in adverse conditions. The remaining methmdsised to implement
the throttled release primitive. As hosts reach the battiery callenter()  to notify
the barrier manager of their arrivaetThrottleReleasePercent() specifies
what percentage of hosts should be released at once, ratherdleasing all hosts si-
multaneouslysetThrottleReleaseCount() defines a specific number of hosts



class PlushBarrief
Barrier(string name int max int timeout int percent int minWait);
void entefstring label string Hostnamg
void setThrottleReleasePercént perceny;
void setThrottleReleaseCoymt coun);
void setThrottleReleaseTimedirtt timeou);

Fig. 2. Plush partial barrier API specification. The methods shoetax traditional barrier se-
mantics for better performance in volatile, wide-area meknconditions.

for release. LastlysetThrottleReleaseTimeout() specifies the frequency of
release. More information about partial barriers can badan [2].

The PlusHile managerhandles all files required by a distributed applicationsThi
unit contains information regarding software packages tfdnsfer methods, installa-
tion instructions, and workflow data files. The file manageegponsible for preparing
the physical resources for execution using the informatimvided by the application
specification. It monitors the status of file transfers arstailtations, and if it detects an
error or failure, the controller is notified and the resoudiseovery and acquisition unit
may be required to find a new host to replace the failed one.

Once the resources are prepared with the necessary sqftivarapplication de-
ployment phase completes by starting the execution. Thaséemplished by starting
a number of processes on remote hosts. Parsicessesare defined within process
blocks in the application specification. A Plush processislastraction for standard
UNIX processes. Processes require information about téme environment needed
for an execution including the working directory, path, coand line arguments, envi-
ronment variables, file /0, and the command itself.

The two lowest layers of the Plush architecture consistadramunication fabric
and thel/O and timer subsystems. The communication fabric handles passing and
receiving messages among Plush overlay participantdciparits communicate over
TCP connections. The default topology for a Plush overlayisently a star, although
we also provide support for tree topologies for increasethfidlity. In the case of a star
topology, all clients connect directly to the controllenelcontroller sends messages to
the clients instructing them to perform certain actions.éWthe clients complete their
tasks, they report back to the controller for further dii@tt The communication fabric
at the controller knows what hosts are involved in a paréicapplication instance, so
that the appropriate messages reach all necessary hosts.

At the bottom of all of the other units is the Plush 1/O and tirabstraction. As
messages are received in the communication fabric, mebsagkers fire events. These
events enter the 1/0 and timer layer and enter a queue. T leap pulls events off
the queue, and calls the appropriate event handler. Tinmera apecial type of event
in Plush. They fire at specific instances of time, rather thaitimg on a queue for an
unknown amount of time.



3.3 User interface

Plush streamlines the develop-deploy-debug cycle foribiged application develop-
ment through a simple terminal interface where users cafogequn, monitor, and
debug their distributed applications running on hundrddsmote machines. In many
ways, Plush combines the functionality of a distributedIskigh the power of an ap-
plication controller, to provide a robust execution enrireent for users to run their
applications. From a user’s standpoint, the Plush ternhiredds like a shell. Plush sup-
ports several commands for monitoring the state of an ei@glas well as commands
for modifying the current application specification. Tahlshows a subset of the avail-
able commands.

Table 1.Plush terminal commands

Command Description

load <filename > Read an XML project file

connect <hostname > Start and connect to a Plush client on a remote host
disconnect Close all open client connections

info control Print the controller’s state information

run Start executing the application in the active project

shell <quoted string >  Run “quoted string” as a shell command on all hosts

In addition to the terminal interface, users can also imteséth hosts running Plush-
managed applications using a web interface. This intenf@aesents detailed informa-
tion about processes, file transfers, host monitoring, gupdiGation status. The web
interface provides a friendlier front-end to the terminatonands that Plush supports.
Most of these commands can be executed by simply clickingdhieus links and but-
tons on the web pages.

In Figure 1(a), the user interface is shown above all othespd Plush. In reality,
the user can interact with every box shown in the figure thingimple terminal com-
mands. For example, the user can force the resource digcandracquisition unit to
find a new set of resources using a terminal command. We dasigiash in this way to
give the user maximum control over the application. At anyfdhe user can override
a default Plush behavior. The overall effect is a customéapplication controller that
has the ability to support a variety of distributed applimas.

3.4 Running an application

In this section, we will discuss how the architectural comgrats of Plush interact to
run a distributed application. When starting Plush, the'siseorkstation becomes the
controller. The user submits an application specificatiothe form of an XML docu-
ment to the Plush controller. The XML document is a represt@nt of the application
specification block hierarchy previously described. Wd wdinsider a specific XML
document in Section 5. The controller parses the specificatind internally creates
the objects shown above the dotted line in Figure 1(a).

After parsing the application specification, the contnotlens the resource discov-
ery and acquisition phase to find a suitable set of resounatsrteet the requirements
specified in the component blocks. Upon locating the necgssaources, the resource



manager stores the required access and authenticatiomiation. The controller then
attempts to connect to each remote host. If the Plush ckembt already running, the
controller initiates a bootstrapping procedure to copyRhesh client binary to the re-
mote host, and then use SSH to connect to the remote hostahthstclient process.
Once the client process is running, the controller estabfisa TCP connection to the
remote host, and transmits #dVITE message to the host to join the Plush control
overlay.

If a Plush client agrees to run the application, the cliemdseaJOIN message
back to the controller accepting the invitation. Next, tloatcoller sends #REPARE
message to the new client, which contains a copy of the agifwitspecification (XML
representation). The client parses the application spatidin, starts a local host moni-
tor, sends #REPAREDnessage back to the controller, and waits for further icsivn
from the controller. Once enough hosts join the overlay amdato run the application,
the controller initiates the beginning of the applicati@ptbyment stage by sending a
GOmessage to all connected clients. The file managers then besjalling the re-
quested software and preparing the hosts for execution.

In most applications, the controller instructs the hostbdgin execution after all
hosts have completed the software installation. (Syndhimthe beginning of the ex-
ecution is not required if the application does not needastfito start simultaneously.)
Since each client has now created an exact copy of the ctamtsapplication speci-
fication, the controller and clients exchange messages #fapplication’s progress
using the block naming schemiee(, /app/compl/procl) to identify the status of the
execution. For barriers, a barrier manager running on thé&raller determines when it
is appropriate for hosts to be released from the barrietsampplication.

Upon detecting a failure, clients notify the controllerdahe controller attempts to
recover from it according to the actions enumerated in tlee'siapplication specifica-
tion. Since many failures are application-specific, Plughogts optional callbacks to
the application itself to determine the appropriate resctor some failure conditions.
When the application completes (or upon a user command3hRltops all associated
processes, transfers output data back to the controltesa Hisk if desired, performs
user-specified cleanup actions, kills the Plush client@sees, and disconnects the hosts
from the overlay by closing the TCP connection.

The set of clients managed by a single Plush controller idimited to one plat-
form. Plush is written in C++, and runs on most UNIX-basedfplans, including
Linux, FreeBSD, and Mac OS X. The same controller has théahil manage clients
across all supported platforms. Currently, Plush supossution on PlanetLab, Mod-
elNet [20], and in local UNIX clusters; support for Grid eraiments is expected to be
completed in the near future.

4 Fault tolerance and scalability

Two of the biggest challenges that we encountered durindabign of Plush was being
robust to failures and scaling to hundreds of machines dpmegoss the wide-area. In
this section we explore how Plush supports fault toleramckesaalability.



4.1 Fault tolerance

Plush must be robust to the variety of failures that occuimgduapplication execution.
When designing Plush, we aimed to provide the functionalégded to detect and
recover from most failures without ever needing to involve tiser running the appli-
cation. Rather than enumerate all possible failures thgteonaur, we will discuss how
we handle three common failure classes—process, hostcamibter failures.

Process failuresWhen a remote host starts a process defined in a process block,
Plush attaches a process monitor to the process. The rdte girbcess monitor is to
catch any signals raised by the process, and to react ajgtedpr\When a process exits
either due to successful completion or error, the processtorosends a message to
the controller indicating that the process has exited, antlides its exit status. Plush
defines a default set of behaviors that occur in response &wiety of exit codes, al-
though these can be overridden within an application spatidin. The default behav-
iors include ignoring the failure, restarting only the éallprocess, restarting the entire
application, or aborting the entire application.

Plush also allows users to monitor the status of a procesiststdl running through
a liveness monitor, whose goal is to detect misbehaving and unresponsive gsese
that get stuck in loops and never exit. This is especiallyfulsa the case of long-
running services that are not closely monitored by the Usause the liveness monitor,
the user specifies a script and a time interval in the proclesk lnf the application
specification. The liveness monitor wakes up once per tire\ial and runs the script
to test for the liveness of the application, returning eithigccess or failure. If the test
fails, Plush Kkills the process, causing the process motutbe alerted and inform the
controller about the failure.

Remote host failures.Detecting and reacting to process failures is straightfodw
since the controller is able to communicate informatiorti® ¢lient regarding the ap-
propriate recovery action. When a host fails, however,vedng is more difficult. A
host may fail for a number of reasons, including network gas hardware problems,
and power loss. Under all of these conditions, the goal oftPis to quickly detect the
problem and reconfigure the application with a new set ofusss to continue exe-
cution. The Plush controller maintains a list of the lastgisuccessful communication
occurred with each connected client. If the controller dugshear from a client within
a specified time interval, the controller sends a ping to tleat If the controller does
not receive a response from the client, we assume hostdaRaliable failure detection
is an active area of research; while the simple techniquenm@ay has been sulfficient
thus far, we certainly intend to leverage advances in trasspvhere appropriate.

There are three possible actions in response to a hostdarestart, rematch, and
abort. By default, the controller will try all three actiomsorder. The first and easiest
way to recover from a host failure is to simply reconnect agstart the application
on the failed host. This technique works if the host expessra temporary power or
network outage, and is only unreachable for a short periddradf. If the controller is
unable to reconnect to the host, the next option is to rematem attempt to replace
the failed host with a different host. In this case, Plush keitun the resource matcher
to find a new machine. Depending on the application, theepkecution may need to
be restarted across all hosts after the new host joins thteatomerlay, or the execution



may only need to be started on the new host. If the contradlenable to find a new
host to replace the failed host and the application desonigpecifies a fixed number
of required hosts, Plush then finally aborts the entire apptin.

In some applications, it is desirable to mark a host as failedn it becomes over-
loaded or experiences poor network connectivity. The Phostt monitor that runs
on each machine is responsible for periodically informihg tontroller about each
machine’s status. If the controller determines that théoperance is less than the ap-
plication can tolerate, it may mark the host as failed arehatt to rematch. This func-
tionality is a preference specified at startup. CurrentlisRImonitors host-level metrics
including CPU load and available memory. This techniquddatba extended to encom-
pass more sophisticated application-level expectatibhest viability [19].

Controller failures. Because the controller is responsible for managing the flow o
control across all connected clients, a failure at the adletris difficult to recover. One
solution is to use a simple primary-backup scheme, wherépteitontrollers increase
reliability. All messages sent from the clients and primaontroller are sent to the
backup controllers as well. If a pre-determined amountroétpasses and the backup
controllers do not receive any messages from the primagypthmary is assumed to
have failed. The first backup in the list becomes the prinmearg, execution continues.

This strategy has several drawbacks. First, it causes ewssages to be sent over
the network, which limits the scalability of Plush. Secotiids approach does not per-
form well when a network partition occurs. During a netwosgtgion, multiple con-
trollers may become the primary controller for subsets efdlents initially involved
in the application. Once the network partition is resohvieds difficult to reestablish
consistency among all hosts. While we have implementedsaoreof this architecture,
we are currently exploring other possibilities for handlfaults at the controller.

4.2 Scalability

In addition to fault tolerance, an application controlles@jned for large-scale environ-
ments must scale to hundreds or even thousands of partisipamfortunately there is
a tradeoff between performance and scalability. The smistthat perform the best at
moderate scale typically do not scale as well as solutiotis wer performance. To
balance scalability and performance, Plush provides weggngwo topological alterna-
tives with varying levels of scalability and performance.

By default, all Plush clients connect directly to the cotliénoforming a star topol-
ogy. This architecture scales to approximately 300 remostsh limited by the number
of file descriptors allowed per process on the controllerhiraein addition to the band-
width, CPU, and latency required to communicate with allnemuted clients. The star
topology is easy to maintain, since all clients connectdiyeto the controller. In the
event of a host failure, only the failed host is affected.

At larger scales, network and file descriptor limitationsheg controller become a
bottleneck. To address this, Plush also supports treedgfs. In an effort to reduce
the number of hops between the clients and the controllegomstruct “bushy” trees,
where each node in the tree has many children. The contisltbe root of the tree.
The children of the root are chosen to be well-connected &tdrfcally reliable hosts
whenever possible. Each child of the root acts as a “proxyrotier” for the hosts
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Fig. 3. Plush connecting to 500 clients on PlanetLab. Since it enoffifficult to find 500 usable
machines on PlanetLab, in this example we use resourcestvorslices.

connected to it. These proxy controllers send invitatioms @ceive joins from other
hosts, reducing the total number of messages sent back todheontroller. Important
messages, such as failure notifications, are still sent tzathe root controller. Using
the tree topology, we have been able to use Plush to manageptication running
on 1000 ModelNet virtual hosts, as well as an applicatiomitg on 500 PlanetLab
clients, as shown in Figure 3. In this example, we show hovg libriakes Plush to
connect to 500 PlanetLab clients. Since the usable numbeachiines on PlanetLab is
often less than 500, we combine the resources from two Rlabhediices to eventually
achieve our goal of 500 clients. This means that in somenostthere are actually
two client processes running on different ports on the saysipal machine. Further,
the default matcher is used in this example, so the machmeehasen randomly. With
a smarter resource discovery mechanism, the time to lo€fteiSable machines may
be reduced. We believe that Plush has the ability to scalecbyaps another order of
magnitude with the current implementation and architectur

While the tree topology has many benefits over the star tgyplbalso introduces
several new problems with respect to host failures and tra@tenance. In the star
topology, a host failure is simple to recover from since ityanvolves one host. In the
tree topology, however, if a non-leaf host fails, all chddrof the failed host must find
a new parent. Depending on the number of hosts affected pafigaration involving
several hosts can have a significant impact on performangee@rent implementation
tries to minimize the probability of this type of failure byaking intelligent decisions
during tree construction. For example, in the case of Modglhany virtual hosts (and
Plush clients) reside on the same physical machine. Whestreanting the tree in Plush,
only one client per physical machine connects directly sdbhntroller and becomes
the proxy controller. The remaining clients running on thene physical machine be-
come children of the proxy controller. In the wide area, familecisions can be made
by placing hosts that are geographically close togetheeuthe same parent. This de-
creases the number of hops and latency between leaf nodéssangiarent, minimizing
the chance of network failures.



5 Example applications

In this section, we take a closer look at two specific applbcetthat are run on Plan-
etLab to demonstrate the versatility and flexibility of Fius a distributed application
controller. We also describe how Plush is currently beiregusithin a batch scheduler
to manage remote job execution in a local ModelNet cluster.

5.1 Managing EMAN on PlanetLab

EMAN [8] is a publicly available software package that isdi$er 3D particle recon-
struction. EMAN starts with a set of 2D electron micrograptages as input, and runs
a series of sequential and parallel computations on theesém reconstruct the 3D
model of the original particle. The computationally intermortion of the execution is
the refinement stage. This stage is run repeatedly on the 2Demuntil the desired
level of detail is achieved in the 3D model. Refinement carulpdn parallel on multi-
ple machines to improve performance. To do this, the raw @sage split up, and each
machine operates on a fraction of the images. The resultatarecombined to produce
the 3D model. EMAN is an example of a Grid-style parallel égadlon.

The parallel refinement stage is a common example of a worldjgplication in
Grid environments. To demonstrate how workflow applicatioperate in Plush, we
will now show how Plush is used to run a single round of the esfiant parallel com-
putation in EMAN. For simplicity, we do not show the sequeahpiortions of the EMAN
application that are typically run on a single machine.

The first step in running EMAN using Plush is to create the igpfibn specification
in an XML document. An example XML specification for EMAN is@hin in Figure 4.
The XML specification contains two main sections of interg&ste top section consists
of object definitions for software and components. The logestion consists of the
Plush application specification blocks that contain thégeats. By separating the defi-
nition of the objects from the block containers that theyweed in, we believe it makes
it easier to understand the flow of control within the apglaablock.

Starting at the top of the XML document, the software definitspecifies the URL
used to locate the required software, the destination fileenan the remote host, the
type of software packagéaf ), and what file transfer method is desired (in this case,
“web” implieswget should be used). The component definition specifies the numbe
of hosts required, what software is required on those hastswhat resource pool to
use for discovery and acquisition. Since a different reseuliscovery service is not
specified, the Plush default matcher will be used to find 18@eanly chosen hosts on
PlanetLab from theicsd _plush slice.

The remainder of the XML document defines the Plush apptinagpecification
block hierarchy. The application block contains a compdtdock that refers to the
component nameBmanGroupl. EmanGroupl was previously described in the top
part of the XML document. The component block also contairvgoakflow block,
which indicates that 100 tasks will be shared among the 10&kevs requested in
EmanGroupl. The workflow block has a process block that contains theshetman
process, consisting of a perl script callethan.pl that runs on each remote host.
eman.pl simply provides a wrapper around the commands provided &EMAN
software package.



<?xml versiors"1.0" encoding"utf-8"  ?>
<plush>
<project name"eman_proj" >
<software name"'EmanSoftware"  type="tar" >
<package nanw'eman.tar” type="web" >
< path>http://plushucsdeduemantar</path>
<dest>emantar</dest>
</package-
<Isoftware>
<component nan®EmanGroupl" >
<rspec><num.hosts>100</num_hosts> <rspec>
<software nanw'EmanSoftware” />

<resources <resource type'planetlab” group="ucsd_plush" /> <resources
</component-
<applicationblock name"eman_app_block" >

<execution>

<componentblock name"eman_comp_block" >
<component nan®EmanGroupl” />
<workflow_block name"eman_workflow_block" id="eman_wf" num.tasks"100" >
<processblock name"eman_proc_block" >
<process nan¥'eman” >
<path>./emanpl</path>
<cmdline>
<substitution nanw'eman_sub" id="eman_wf" type="workflow" flag="--i" />
</cmdline>
<Iprocess
<Iprocessblock>
< /workflow_block>
</componentblock>
</execution>
</applicationblock>
<lIproject>

</plush>

Fig. 4. EMAN application specification.

The substitution information in the process definition isdign conjunction with
the EMAN Perl script to split the workflow among the hosts. is@how the workflow
block has and attribute that is identical to thid attribute in the substitution. In this
case.eman.pl uses a command line argument to specify itheof the task, which
is then used to determine what fraction of the data files shbalprocessed by each
host. The workflow block substitutes the current task id f@ tommand line argu-
ment defined by the-*i " flag. For example, the first host BmanGroupl will run
“Jeman.pl --i 1 . the second will run ‘/feman.pl --i 2 ,and so on.

Plush users that manage applications like EMAN have thedtidaefit of being
able to use the Plush barrier abstraction to improve pediaga. In addition to the
user defined parameters for early entry and throttled re|dlash provides automated
mechanisms for detecting when the “knee” of the completiowe has been reached.
Thus, if a subset of hosts are not operating as quickly aseste the tasks assigned
to the slow hosts can be reassigned to a faster host that fe@slyalcompleted. Our
experiments show that this technique can result in a fadt@ speedup in EMAN.
Details from the EMAN trials and other barrier related expents are discussed in [2].



5.2 Managing SWORD on PlanetLab

SWORD [17] is a resource discovery tool designed for use andLab. It relies on
host monitors running on each PlanetLab machine to repfotrration periodically
about their resource usage. This data is stored in a DHTrif@istd hash table), and
later accessed by SWORD clients to respond to requests dopgrof resources that
have specific characteristics. SWORD is a service that allBlanetLab users to find
the best set of resources based on the priorities and reqgirs specified, and is an
example of a long-running Internet service.

The application specification for SWORD is similar to EMANcept for a few
minor differences. Instead of specifying a single valuerfom hosts , a range of ac-
ceptable values is defined, since SWORD is a service thatswantun on as many
nodes as possible. Further, when specifying the applicdiiock for SWORD, we in-
clude speciakervice andreconnect _interval attributes. Theservice  bit
tells the Plush controller that SWORD is a long-running senand requires differ-
ent default behaviors for failure recovery. For example, jifrocess fails, the controller
will attempt to restart SWORD on that host without abortihg tvhole application.
Theservice bit also instructs the controller to periodically probe tsdsr liveness.
Users can define an application specific liveness monitdrinvihe application block
as described in Section 3. Since SWORD is a service, thealtantwill not wait for
all participants to join and install the software beforetatg everyone simultaneously.
Instead, the controller will instruct individual clients start the application as soon as
the client finishes installing the software, since therenisgason to synchronize across
all hosts.

Thereconnect _interval specifies the periodicity that the controller uses for
rerunning the resource discovery and acquisition unitéog running services, hosts
are going to fail and recover during execution. Tieeonnect _interval tells
Plush to check for new hosts that may have come alive sinclaghéme the resource
discovery unit was run. This is the controller’'s way of “reghing” the list of available
hosts. The controller will continue to search for new hostiess the maximum value
specified in themum_hosts tag is achieved.

To demonstrate Plush’s ability to recover from host fanee ran SWORD on
PlanetLab with 100 randomly chosen hosts, as shown in Figurae host set includes
machines behind DSL links as well as hosts from other contsméVhen Plush starts
the application, it initiates connections to 100 machimastaey each begin download-
ing the SWORD software package (which is 38 MB in size). lekpproximately
1000 seconds for all hosts to successfully download, instadl start SWORD. At time
t = 1250s, we kill the SWORD process on 20 randomly chosen hosts tolabemhost
failure?. The remote Plush clients notify the controller that thethibsve failed, and
Plush controller begins to find replacements for the failetthines. The replacement
hosts join the overlay and start downloading the SWORD sm#wAs before, the re-
placements are chosen randomly, and low bandwidth/higind¢stlinks have a great
impact on the time it takes to fully recover from the hostued. At approximately
t = 2200s, the service is restored on 100 machines.

2 Normally, Plush would automatically try to restart the SWDrocess. However this feature
was disabled to simulate host failures and force a remajchin
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Fig. 5. SWORD running on 100 randomly chosen PlanetLab hosts. A58 Feconds, we fail 20
hosts. Plush finds new hosts, who connect to the controfidrbagin downloading and installing
the software. Service is restored at approximately t=22001sds.

5.3 Remote job execution in Mission

Mission is a simple batch scheduler used in our local clustenanage the execution
of jobs that run on ModelNet [20]. ModelNet is a network entigla environment that
consists of Linux edge nodes running real code, and a sete&83D core machines
running a specialized ModelNet kernel. The code runnindierend hosts routes pack-
ets through the core machines, where the packets are sdbjedhe delay, bandwidth,
and loss specified in a target topology. A single physicalhireccan host multiple
virtual IP addresses on the edge hosts. In order to setup tigelMet environment, the
user must first deploy the topology on each physical machickiding the core. Then,
after setting a few environment variables, the user can pptiGations on the virtual
hosts using virtual IP addresses just as applications aremyphysical machines using
real IP addresses.

A single ModelNet experiment typically consumes almosbéthe computing re-
sources available on the machines involved. Thus when mgnamn experiment, it is
essential to restrict access to the machines so that onlgxgmeriment is running at
a time. Mission is a batch scheduler developed locally tefishaccomplish this goal.
ModelNet users submit their jobs to the Mission job queud,asthe machines become
available, Mission pulls jobs off the queue and runs themedmalf of the user.

Plush is used within Mission for running the jobs and settipgthe user envi-
ronment. A Mission job description is simply a Plush apglma specification. Using
Plush, the deploy and run phases required to use ModelNdieeanmbined into one
application specification with two component blocks. Onmponent block describes
the physical machines, and the second component blockibestine virtual machines.
The process block in the first component block deploys theltay, and the process
block in the second component block runs the applicationlbwirdual hosts. Barri-
ers are used to separate the deploy and run phases. To stigpuittual hosts using
Plush, we must provide a mapping between port numbers onlithe machines and
ModelNet virtual host information. The mapping is descdliea directory file, which
is an XML document that supplies Plush with the necessagrindtion to run a Mod-
elNet experiment. Figure 6 shows an example directory fileelthe controller starts



<?xml versiorr"1.0"  encoding"UTF-8" ?>

<plush>
<resourcemanager type'ssh" >
<node hostnan®'sysnet80.ucsd.edu:15400" group="modelnet_deploy" />
<node hostnan®'sysnet81.ucsd.edu:15400" group="modelnet_deploy" />
<node hostnan¥'sysnet81.ucsd.edu:15401" vip="10.0.0.1" vn="1" group="modelnet" />
<node hostnanw'sysnet81.ucsd.edu:15402" vip="10.0.0.2" vn="2" group="modelnet" />
<Iresourcemanagey
</plush>

Fig. 6. ModelNet directory specification. sysnet80 is the FreeBSt2 enachine. sysnet81 is a
Linux edge host that is running 2 virtual hosts.

a Plush client on a virtual host, it specifies extra commamel irguments that set the
appropriate ModelNet environment variables. This ensthrasall commands run on
that client on behalf of the user will inherit those settings

6 Related work

The functionality that Plush provides is related to work imagiety of areas. With re-
spect to remote job execution, there are several toolsadlaithat provide a subset of
the features that Plush supports, including cfengine [6%eg [11], and vxargs [21].
The difference between Plush and these tools is that Plustid@s more than just re-
mote job execution. Plush also supports mechanisms faréaiecovery, and automatic
reconfiguration due to changing conditions. In general pllnggable aspect of Plush
allows for the use of existing tools for actions like res@udiscovery and allocation,
which provides more advanced functionality than most renat execution tools.

From the user’s point of view, the terminal interface thatdRl provides is similar
to distributed shell systems such as GridShell [22] and G@&#H$16]. These tools
provide a user-friendly language abstraction layer thppett script processing. Both
tools are designed to work in Grid environments. Plush plewa similar functionality
as GridShell and GCEShell, but unlike these tools, Plustbeacustomized to work in
a variety of environments.

In addition to remote job execution tools and distributedllsh projects like the
PlanetLab Application Manager (appmanager) [13] and HPfeu$Frog [12] focus
specifically on managing distributed applications. appagen is a tool designed for
PlanetLab that helps users maintain long running servimgsjoes not support short-
lived applications as easily. SmartFrog [12] is a framewforkdescribing, deploying,
and controlling distributed applications. It consists ab#lection of daemons that man-
age distributed applications and a description languaggesaribe the applications.
Unlike Plush, SmartFrog is a not a turnkey solution, but eath framework or API
for building configurable systems. It does not provide a waynteractively control
distributed applications.

The Grid community has several application managemenégt®jvith goals sim-
ilar to Plush, including Condor [5] and GrADS/VGrADS [4]. @aor is a workload
management system for compute-intensive jobs that is degitp deploy and manage
distributed executions. Where Plush is designed to deptdymaanage naturally dis-
tributed tasks with resources spread across several Sieslor is optimized for lever-



aging underutilized cycles in desktop machines within @ranization where each job is
parallelizable and compute-bound. GrADS/vGrADS [4] pd®s a set of programming
tools and an execution environment for easing program dpwent in computational
grids. GrADS focuses specifically on applications whereuese requirements change
during execution. The task deployment process in GrADSslai to Plush. Once the
application starts execution, GTADS maintains resourgeirements for compute in-
tensive scientific applications through a stop/migrastame cycle. Plush, on the other
hand, supports a far broader range of recovery actions.

Within the realm of workflow management, there are tools firavide more ad-
vanced functionality than Plush. For example, GridFlow, [Rgpler [15], and the other
tools described in [23] are designed for advanced workflomagament in Grid envi-
ronments. The main difference between these tools and Bhedhat they focus solely
on workflow management schemes. Thus, while they provideeradwanced func-
tionality than Plush with respect to workflow managemergytlack much of Plush’s
functionality for managing other classes of distributeglagations that do not contain
workflows.

Lastly, the Globus Toolkit [9] is a framework for building @rsystems and appli-
cations, and is perhaps the most widely used software padkagsrid development.
Some components of Globus provide a similar functional#yaush. With respect to
our application specification language, the Globus Reso&mecification Language
(RSL) provides an abstract language for describing ressutat is similar in design to
our language. The Globus Resource Allocation Manager (GRpiMdcesses requests
for resources, allocates the resources, and manages mtis/én Grid environments,
providing much of the same functionality as Plush does. Tggdst difference between
Plush and Globus is that Plush provides a user-friendlyt giterface where users can
directly interact with their applications. Globus, on thteer hand, is a framework, and
each application must use the APIs to create the desiredidmadity. In the future, we
plan to integrate Plush with some of the Globus tools, sudBRA&M and RSL. In this
scenario Plush will act as a front-end user interface fotabés available in Globus.

7 Conclusion

Plush is an extensible application control infrastructiesigned to meet the demands
of a variety of distributed applications. Through user+tiedi mechanisms, Plush man-
ages resource discovery and acquisition, software iasitafl, process execution, and
failure recovery on behalf of the user. When an error is deti@lush has the ability to
perform several application-specific actions, includiestarting the computation, find-
ing a new set of resources, or attempting to adapt the apipictp continue execution
and maintain liveness. In addition, Plush provides twoxadasynchronization prim-
itives that help applications achieve good throughput émampredictable wide-area
conditions where traditional synchronization primitivas too strict to be effective.
Unlike many related tools, Plush does not require appboatto adhere to a specific
API. In fact, applications managed by Plush do not have tahamged at all. By com-
bining a user-friendly shell interface with a powerful artthptable application control
infrastructure, Plush gives users the control requiredutcassfully manage applica-



tions without the hassle that typically comes with runnioghputations on large-scale
federated testbeds.
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