
10.1117/2.1200803.1021

An integrated software
environment for distributed
systems development
Jeannie Albrecht, Ryan Braud, Charles Killian,
Priya Mahadevan, Kashi Vishwanath, and Amin Vahdat

New tools simplify many tasks associated with designing, managing,
and evaluating computer programs that run on thousands of computers
worldwide.

As the number and diversity of Internet users continue to
increase, Internet-based services—such as search engines and
news websites—require more computing power in remote loca-
tions to satisfy user demand. Rather than hosting these services
on a single centrally located server, companies are beginning
to distribute the computing workload across thousands of
servers worldwide. These distributed systems offer a number
of advantages, including improved reliability and performance.
However, designing and implementing a program that simulta-
neously runs on thousands of computers also introduces many
new challenges to software developers, such as maintaining con-
sistency across machines, evaluating performance, and detecting
and recovering from errors.

To better understand these challenges, we now consider the
tasks required to develop a distributed system. We group these
tasks into three distinct phases: design and implementation,
large-scale testing and evaluation, and wide-area deployment.
The design and implementation phase involves writing code
that accomplishes the goals of the target system. Next, the test-
ing and evaluation phase looks for potential problems with the
initial system design and corrects any bugs that may hinder per-
formance. It is important to thoroughly test the code in a variety
of settings that represent several different potential usage mod-
els of the system. After determining that the code behaves as ex-
pected and achieves high performance in the test cases, the final
step is to deploy the program across the Internet and evaluate
its performance. We have developed a number of tools that sim-
plify the tasks involved with each of these phases, as described
below. While individually valuable, together these tools form an

Figure 1. The ModelNet emulator allows developers to evaluate dis-
tributed systems in realistic network environments without modifying
their code.

integrated environment for building, testing, and deploying dis-
tributed systems.

Phase 1: design and implementation
Since most distributed systems are designed to run on com-
puters connected to the Internet, the code we develop must
be robust enough to accommodate volatility. Internet-connected
computers are often failure-prone, and wide-area network con-
ditions tend to vary at high rates. Others have developed tools
that help software developers address these issues. However,
many are difficult to use correctly and often negatively impact
system efficiency. We have developed the Mace1 distributed
systems toolkit, which overcomes these limitations by provid-
ing a powerful, event-based framework for dealing with both
networking and event handling. Developers describe their sys-
tems using a simple but expressive specification template lan-

Continued on next page



10.1117/2.1200803.1021 Page 2/3

Figure 2. This 2000-node topology was generated by Orbis.

guage, augmented with C++ event handlers, that is then trans-
lated into a standard C++ implementation. Developers achieve
performance by using a low-level programming language, and
simplicity by allowing the compiler to write the tedious and
repetitive code. Mace provides additional debugging tools,2

including the Mace model checker (MaceMC),3 which finds live-
ness bugs (violations of desired system behaviors) using a com-
bination of systematic execution and long random executions.

Phase 2: large-scale testing and evaluation
After building the system, the next step is to perform large-scale
tests in realistic conditions. The goal of this phase is to evalu-
ate performance without actually running the code on the In-
ternet, because many immeasurable and uncontrollable factors
make it especially challenging to draw conclusions based on test-
ing and evaluation. It is easier to perform initial tests in con-
trolled environments, where developers can isolate and measure
specific components of their programs separately. As a result,
many developers resort to network simulators for testing their
systems in large-scale settings. Simulators give developers com-
plete control over their environment. However, simulators often
require developers to modify their code, which could introduce
new bugs or hide problems that exist in the actual code. In re-
sponse to these limitations, we developed ModelNet4 (see Fig-
ure 1), a large-scale network emulator that allows developers
to evaluate distributed systems in realistic Internet-like environ-
ments without modifying the program code. ModelNet subjects
the packets of unmodified applications to the hop-by-hop laten-
cies, bandwidths, and queueing policies of a user-specified net-
work topology in real time. Additionally, ModelNet can be used
in conjunction with large-scale network topologies generated by

Figure 3. The Nebula interface to the Plush distributed system man-
agement framework displays the status of a program running on Plan-
etLab machines in Europe.

Orbis5 (see Figure 2) and realistic Internet traffic generated by
Swing6 to give developers a wide range of testing scenarios for
their programs.

Phase 3: wide-area deployment
The unpredictability and volatility of the Internet often uncover
a variety of new problems and bugs in programs. In the past,
it was difficult to obtain access to hundreds of machines world-
wide for testing purposes, and many developers were unable
to complete this final phase of development. The recent intro-
duction of testbeds such as PlanetLab7 now give developers an
opportunity to test their distributed systems on hundreds of
computers spread across the Internet. PlanetLab machines run
Linux, and are accessible only via SSH (secure shell). Develop-
ers who wish to use PlanetLab resources often spend a signif-
icant amount of time configuring the PlanetLab machines for
their program and then monitoring the execution in an effort
to detect and recover from errors. Plush8 is a distributed system
management framework that automates many of these tasks and
simplifies error detection and recovery. Plush provides several
different user interfaces for interacting with programs running
across PlanetLab, including Nebula (shown in Figure 3), a graph-
ical user interface that allows users to visualize the status of
their program’s execution. To help find the best set of PlanetLab
machines available for running distributed systems, Plush uses
remote procedure calls implemented via XML-RPC to interface

Continued on next page



10.1117/2.1200803.1021 Page 3/3

directly with resource management services such as SWORD, a
scalable wide-area resource discovery service for PlanetLab.9

Conclusions and future work
The state of the art in building, deploying, visualizing, and
debugging distributed systems has not advanced much in the
past 20 years. In many cases, researchers and software develop-
ers must still use customized, brittle scripts for managing dis-
tributed environments, and simple printf logging techniques
for manual program inspection and debugging. The goal of our
work is to build an integrated environment to ease this pro-
cess. In particular, we have developed tools to simplify the three
key phases of distributed systems development, including a pro-
gramming toolkit for building and debugging code, a network
emulator for advanced evaluation in controlled environments,
and a management and visualization framework for Internet de-
ployment and analysis. Moving forward, we are continuing to
work on building additional language tools to aid with perfor-
mance debugging of distributed systems, improving the realism
of our evaluation environment, and enhancing the usability and
functionality of our management framework.

Author Information

Jeannie Albrecht
Williams College
Williamstown, MA
http://www.cs.williams.edu/∼jeannie

Jeannie Albrecht is an assistant professor of computer science.
She received her MS from Duke University in 2003, and her PhD
from the University of California, San Diego (UCSD) in 2007 un-
der the direction of Amin Vahdat and Alex C. Snoeren.

Ryan Braud, Charles Killian, Kashi Vishwanath, and
Amin Vahdat
University of California, San Diego
La Jolla, CA
http://www.cs.ucsd.edu/∼rbraud
http://www.cs.ucsd.edu/∼ckillian
http://www.cs.ucsd.edu/∼kvishwanath
http://www.cs.ucsd.edu/∼vahdat

Ryan Braud is a PhD student working under the direction of
Amin Vahdat in the Systems and Networking research group.

Charles Killian is a PhD candidate in the Department of Com-
puter Science and Engineering under the supervision of Amin

Vahdat. He completed his MS in computer science from Duke
University in 2004. He expects to complete his PhD in June 2008.

Kashi Vishwanath is a PhD candidate. He works in the Systems
and Networking research group under the direction of Amin
Vahdat. Kashi expects to complete his PhD in 2008.

Amin Vahdat is a professor in the Department of Computer Sci-
ence and Engineering and director of the Center for Networked
Systems. He received his PhD in computer science from the Uni-
versity of California, Berkeley in 1998 under the supervision of
Thomas Anderson. Before joining UCSD in January 2004, he was
on the faculty at Duke University from 1999 to 2003.

Priya Mahadevan
Hewlett-Packard (HP) Labs
Palo Alto, CA
http://sysnet.ucsd.edu/∼pmahadevan

Priya Mahadevan graduated with a PhD in computer science
from UCSD in 2007. She now works at HP Labs in Palo Alto. She
completed her MS in computer science from Duke University in
2003.

References

1. C. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat, Mace: language
support for building distributed systems, Proc. Program. Lang. Design Implem., 2007.
http://mace.ucsd.edu (accessed 21 Mar 2008)
2. P. Reynolds, J. L. Wiener, J. C. Mogul, M. A. Shah, C. Killian, and A. Vahdat,
Pip: detecting the unexpected in distributed systems, Proc. 3rd ACM/USENIX NSDI
Symp., 2006. http://issg.cs.duke.edu/pip/ (accessed 21 Mar 2008)
3. C. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat, Life, death, and the
critical transition: finding liveness bugs in systems code, Proc. 4th ACM/USENIX NSDI
Symp., 2007. http://mace.ucsd.edu (accessed 21 Mar 2008)
4. A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and D. Becker,
Scalability and accuracy in a large-scale network emulator, Proc. 5th USENIX OSDI
Symp., 2002. http://modelnet.ucsd.edu (accessed 21 Mar 2008)
5. P. Mahadevan, C. Hubble, B. Huffaker, D. Krioukov, and A. Vahdat, Orbis:
rescaling degree correlations to generate annotated Internet topologies, Proc. ACM SIG-
COMM Conf., 2007. http://orbis.ucsd.edu (accessed 21 Mar 2008)
6. K. Vishwanath and A. Vahdat, Swing: generating realistic packet traces, Proc. ACM
SIGCOMM Conf., 2006.
7. L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir, Experiences building Plan-
etLab, Proc. 7th USENIX OSDI Symp., 2006. http://www.planet-lab.org (accessed
21 Mar 2008)
8. J. Albrecht, R. Braud, D. Dao, N. Topilski, C. Tuttle, A. C. Snoeren, and A. Vah-
dat, Remote control: distributed application configuration, management, and visualization
with Plush, Proc. 21st USENIX LISA Conf., 2007. http://plush.cs.williams.edu (ac-
cessed 21 Mar 2008)
9. D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, Design and implemen-
tation tradeoffs for wide-area resource discovery, Proc. IEEE Symp. High Perf. Distrib.
Comp., 2005. http://sword.cs.wiliams.edu (accessed 21 Mar 2008)

c© 2008 SPIE


