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Abstract vice the requirements of a broad range of applications.

Support for application deployment and monitoring in large _ ©One benefit of the latter approach is masking the often
scale distributed systems such as PlanetLab remains in ifignificant complexity associated with executing, configur
early stages. While a number of solutions exist for specifidd: and managing large-scale distributed computaticora fr
subtasks of deployment and monitoring, these tools suffefnd users who would otherwise have to relearn the black
from a lack of integration. Most tools were developed specif &'t Of reliably deploying and maintaining networked system
ically to deploy and manage a particular service or applica@Cr0Ss asynchronous and failure-prone distributed emviro
tion on a single platform and were not designed to be generd'€Nts- A second be_neflt is separating the_sp_euﬂcatlon of a
enough to support different environments. In this paper, wélistributed computation—a high-level description of wieat
consider three different classes of PlanetLab application Sources a particular application requires or desires, imew t
distill a set of requirements for a general applicationtoain ~ @PPlication should react to failures, and its individuaapés
infrastructure. We then discuss initial experiences asstlas ~ Of computation—from the application logic that actually-im
learned during the development and PlanetLab deployment dyements the computation. In this manner, we can avoid tools

Plush, a tool designed to manage applications running ovéhat"hardwire” knowledge of a particular distributed enovi-
large-scale distributed systems. ment’s configuration such as the characteristics of indizid

hosts or network links. These attributes inherently change
1 Introduction overti_me, resulting in brittle tools. - _

) o o While both approaches have merit in different scenarios
Emerging distributed computation infrastructures such agnq settings, in this article we explore the benefits of tice se
PlanetLab [2, 18] and the Grid [8] hope to support applica-gng approach. We present Plush, a framework of components
tions that simultaneously run on hundreds or even thousanqﬁat’ when taken together, provide a unified environment to
of heterogeneous physical m_achines di.stribut_ed acrosathe supportthe distributed application design and deployrifent
ternet. Today, however, running even simple jobs across suGycle. plush users describe distributed applicationsgusin
infrastructures is typically a cumbersome, manual, anorerr  oyansible XML specification language. The language allows
prone process. A number of tasks must be completed bgjsers to customize various aspects of the deployment life cy
fore starting an application, including resource discgve- ¢ 1o fit the needs of an application. This functionality can
source allocation, file distribution, and environment cgpnfi o used, for example, to specify a specific resource disgover

uration. Finally, once the application starts up, its €xecu oy gjiocation tool to use during application deployment.
tion must be carefully monitored and controlled. Our €X- opce an application is up and running, Plush monitors it

perience indicates that researchers regularly expenda greqor fajlures or application-level errors for the duratiohits
deal of time and effort deploying and managing their appli-execution. Upon detecting a problem, Plush can perform a
cations, considerably complicating the end goal of conduct, mper of user-configurable actions, such as restarting the
ing research experiments or maintaining an Internet servic anpjication, automatically reconfiguring it, or even séig
While a number of tools exist to independently address Somg), giternate resources. For applications requiring védea

of j[he cha!lenges, their overall utility is limited by thésrck synchronization, Plush provides a number of efficient syn-

of integration. _ L _ . chronization primitives. In particular, Plush providestaew
There are two options for running individual applications prrier semantics, which relax traditional barrier serizant

across heterogeneous distributed environments like Rlangq, increased performance and robustness in failure-pgone

Lab. Currently, a large number of PlanetLab applications ad, j;onments.

dress deployment and monitoring in ad hoc, application- The remainder of this article reports our experiences de-

specific fashion. = Such custom implementations can pefgigning and building Plush. Section 2 describes three com-

fectly match each application’s semantics and requiresentyon classes of PlanetLab applications. Motivated by these
while providing high performance in certain environments.q|asses  Section 3 enumerates requirements for a general-

The major challenge, of course, is retooling the infrastruc 5, rpose application control infrastructure.  Section 4 de-
ture when application requirements or PlanetLab condtionscripes the architecture of Plush in more detail. In Seciion

change. A second, alternate approach develops a runtime e outiine some of the important lessons we have learned
vironment that exports a common set of abstractions to ser-



during the development of Plush. We discuss related work irencounter. Hence, in addition to the tasks described above
Section 6 before concluding in Section 7. for short-lived applications, users who manage servicest mu
> . perform additional tasks to maintain the service over an ex-
Usage scenarios tended period of time. These network services are expected
We begin by exploring three different classes of applic®tio to run for several months or longer and are often not moni-
that often run on PlanetLab: a short-lived distributed &@pl  tored as closely as those with shorter lifetimes. Furtlieces
tion, a continuously running Internet service, and a Gtides  these applications provide a service to others, avaitghdi
parallel application. critical.
2.1 Short-lived applications Sgppose a user wants to deplpy a new resource discovery
. . . _.service on PlanetLab. The service aims to run on as many
One ofthe most_common uses of PIgnetLab IS FO 'nteraCt'VelﬁslanetLab machines as possible to provide accurate informa
execute short distributed computations. Applicationgean tion to users. To deploy such a service, a user must go through

from the simple, where a novice wishes to gain EXPENENCEH 6 same process as described in the previous section for es-

with PlanetLab applications, to the complex, where eXper"tablishing authentication, adding nodes to a slice, finding

enced users wish to test new protocols. Short-lived appll'suitable set of resources, transferring software, andirsgar

cations like thes_e typically run for a few days or less andthe executable. However, users running short-lived agplic
are closely monitored by the user. For example, suppose flons often pick powerful machines that have good connectiv

usir wantsttto tedst aﬂle-(;jltshtrlbunolg pr_lc_)rt]ocol on 50 F;ldaﬁbtl‘ ity, i.e., low-latency and high-bandwidth connections. When
nodes scattered around [he world. € user would have nning a service on a larger number of machines, a user is

gain access to PlanetLab, find 50 machines capable of run,

. - : ubjected to slow or lossy connections in addition to more
ning the application, install the software on those 50 Mayasirable low-latency, high-bandwidth links. Furthe
chines, run the application, and collect any output files pro X

duced f vsis. Wi ine thi . detail machines may have slower processors and less free memory.
uced for analysis. WWe examine this process in more detail. v o choosing nodes to host an Internet service often hinge

To then test this new protocol on PlanetLab, the user musf avoiding nodes that frequently perform poorly over rela-

first gain access to PlanetLab resources. Authentication Oﬁ\/ely long time periods rather than choosing nodes that per

PlanetLab is baseq on _public_-key cryptography, and_ accesy;m well at any given point in time [19].

to PlanetLab machines is achieved through SSH login using Once the service is running, the user monitors her pro-
. %esses for failures. When running short-lived applicatjon
Central (PLC) to obtain a user accountand create an SSH kq.}'sers often treat a failure as an aberrant condition and dis-

pair. Once the user uploads a public key to the PLC databasgard the results of the run. For long-running servicesyfasg

_she can associate h_er a_lccount with a PlanetLab slice. A SIICa?re the rule rather than the exception and, therefore, neust b
is a named set of distributed PlanetLab resources. It form

dddressed as such. Thus, if a failure does occur, the user at-
the basis for both resource allocation and isolation. Tk us ' '

. . . : > tempts to restore the service as quickly as possible to aiaint
binds the slice to a number of physical machines (e.g., usin b g yasp

a Web interface), which causes the user’s public key to b(glgh availability.

tcr?:ﬁgéﬁi;hee;odes and the user to be authorized for login t%_3 Grid-style parallel applications

The next step is to find a suitable set of machines. ReJhough there are many different types of Grid-style applica
source discovery tools like SWORD [15] can be used to helgions, one of the most common usage scenarios is harnessing
streamline the process. For our example, the user may issti8SouUrces at one or more sites to execute a computationally
a SWORD query for 50 machines with fast processors, largétensive job. A typical Grid application often involvestha
amounts of free memory, and high pairwise bandwidth. Onc&ring data from specific sites, and then processing thisiata
a set of machines has been identified, the user must transfaicompute-intensive application to produce the desiradtres
any required software to the 50 machines using a file trangVlany Grid applications are highly parallelizable: rathtear
fer protocol such as scp, Bullet [14], or CoBlitz [17]. The running on a single machine with one or more processors,
executable must then be started on all 50 machines at appro$le computation is split up and run across several machines
imately the same time. This is accomplished by connecting t41 parallel. Parallelization has the potential to incretise
each machine separately via SSH and then executing the apverall performance substantially, but only if each maehin
propriate command. Typically, once the execution complete involved makes progress. For a researcher running a Grid ap-
a set of output files must then be copied to a central locatioRlication, choosing the appropriate set of machines isiaruc

for analysis. to achieving good throughput. Experience shows this can be
) ) quite difficult on PlanetLab.
2.2 Long-lived Internet services For example, suppose a physicist wants to run EMAN [6]

Along with short computations, PlanetLab is also used to deen PlanetLab. EMAN is a publicly-available software pack-
ploy services that run continuously. Current PlanetLab serage used for reconstructing 3-D models of particles using 2-
vices include CoDeen [16], Coral [9], and OpenDHT [20], D electron micrographs. The program takes a 2-D micro-
among others. Long-running services must be robust to a vagraph image as input and then runs a “refinement” process on
riety of failures that short-lived applications generaltynot  the image to create a 3-D model. The refinement process is



captures desired resource specifications, declares hagw the

e oty S bplieation | should be acquired, and includes any additional infornmatio
Bl I needed to correctly instantiate and run the applicationy An
information required for authentication is also includethis
I | pentenion description.

‘Access Control

Résource
DMonitors

Figure 1. Basic requirements and flow of control for a dis-
tributed application control infrastructure.

Resource Discovery and Acquisition. The first step to
successfully running any distributed application is ofiitzg
a suitable set of resources on which to run. Because resource
in distributed environments are often heterogeneoussuser
naturally want to find the set of resources that will best sat-

run repeatedly until yielding a result with the desired gyal 1Sy the requirements of their applications. Even on Planet
Each iteration of refinement consists of both computatignal Lab, where the hardware is largely homogeneous, dynamic
inexpensive sequential computations and computatiogzily characteristics of a node such as available bandwidth, CPU

pensive parallel computations. For multiple iterationsesf ~l0ad, €fc., vary greatly over time. The goal of resource dis-
finement, the entire cycle is repeated. covery is to find the_ be:gurrent set of physical resources for

As in the other applications, the researcher running EMANthe distributed application as specified by the user.
has to gain access to PlanetLab, find suitable resources, dis The role of the application control infrastructure is togear
tribute the software and data files, install the softwarej an the user's request for resources and send the request te an ap
start the executable. Unlike the short-lived applicatiothe ~ Propriate resource discovery mechanism. The resource dis-
long-running service described above, however, the perforcovery mechanism interacts directly with the resource acqu
mance of EMAN is greatly affected by the computational re-Sition system. Resource acquis_ition can be accomplishad in
sources available on the machines hosting the parallel conflumber of ways. For example, if resource reservations are re
putations. Thus, with each iteration of the refinement produired, the resource acquisition mechanism is resporfsible
cess, the researcher running the application wants to ese t§Ubmitting a resource request on the user's behalf and sub-
set of machines that has the most available computational réequently obtaining a usage lease. Currently, the machines
sources. Further, if a machine fails or suddenly becomes ovein PlanetLab are in a “best effort” pool, which means that
loaded during the refinement process, the machine should B advanced reservations are required for use. Therefore no
replaced by another with more available resources. In parfurther steps for acquisition are typically negded, bUW’P
allel applications such as EMAN, the rate of completion formental requests can be issued to systems like Bellagio [1] or
individual tasks is often delayed by a few slow machines orSirus [21] if desired.
processors. Detecting and recovering from these bottkenec ~ ApPplication Deployment. Once a set of resources have
is both difficult and essential to achieve high performance i Peen located, the next step required in most scenarios is de-

parallel applications. ployment. The process of application deployment involves
preparing the physical resources with the correct softaade

equirements ata files, and then running the executable to start the-appli

3 Requi data fil d th gth table to start the-appl

In the previous section we investigated the process of execucat'(_)n' This typically involves copying, unpacking, ane_l In
ing three different classes of distributed applicatiorisodgh ~ Stalling the software on the hosts that were selected in the
the low level details for managing the applications were dif €Source discovery and acquisition process. An applicatio
ferent, at a high level the requirements for each examplewercontrc’l infrastructure must hand_le a variety of differeta f|_
largely similar. Rather than reinvent the same infrastmect transfer protqcols for each enwrpnment, and must provide
for each application separately, we set out to identify com-Support for failures that occur during the transfer of saftsv

monalities across all three classes of distributed apiiics, or the ls.tartllng of t.he executable.h h difficul
and build an application control infrastructure that supgpo App ication Mamtengnc_e. Per aps_t e most di Icu t_ re-
all three types of applications and environments. Based ofjuirement of the application control infrastructure is ion

the discussion in the previous section, we now extract somgmnlg an apbpllcatrllonhafterflt f;a_sl, be((ejn started. Mkonltorlng
general requirements for a distributed application cdritro involves probing the hosts for failure due to network outage

frastructure. Together, these requirements define thedlpi or hardware_malfungtions, que_rying the applligation fori-ipd
flow of control for any distributed application, as shown in ¢&tions of failure during execution, and providing hook®in
Figure 1. application-specific code for observing the progress of@an e

Application Specification. The application specification ecution. The goal of application maintenance is to maintain

identifies all aspects of the execution and environmenteted app_llcatlon liveness, prow_de detailed error informafiand
by the application control infrastructure to successfaly achieve forward progress in the face of failures. A robust ap

ploy, manage, and maintain the application. It describes thplication control inf.rf_;lstructure mu§t be able tol adapt &s8+
software required to run the application—including how to than-perfect” conditions and continue execution. For exam

access and install it—and processes that will run on each m&!€: if @ user wants to use 50 machines, but only 48 can be

chine. To support a variety of environments, the user specﬁontade_d’ the applicat_ion C°_””°' infrastructure shaulept
fies these details using an extensible description langhadje appropriately and continue with only 48 machines.
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<cluster name"demo_group" >
Client
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<software name'demo_soft" />

Client <rspec>
<num.hosts>50</num_hosts>
L] </rspec>
<execution>
Figure 2: Plush application controller running on a local work- <PL°;:§; ?dlnrfoiiret)/p;m
station connected to light-weight clients running on remog¢ hosts <cmdline> <arg>300</arg> </cmdline>
in different environments. </process>
</execution>
</cluster>
<resources
4 Plush <resource type'plab”  group="ucsd_3" />
. . . . . . /
In this section, we describe Plush, an extensible apptinati Seonfiguration
control infrastructure for large-scale distributed systede- <applicati<z_n name’demo_app" >
signed to meet the requirements from Section 3. A primary S eonfiguration name'demo_conf" />
goal of Plush is to simplify the develop-deploy-debug cycle <lexecution>

that researchers go through when developing large-scale di </p<ré?g§t”>catiom

tributed applications. Plush achieves this goal throughma s < piush>
ple terminal interface where users can deploy, run, manitor
and debug their distributed applications running on hudsire
of remote machines through basic terminal commands. Figure 3: Sample application specification that defines a preess
Unlike local clusters, wide-area environments like Planet (demo.exe ) that will run for 300 seconds on 50 remote Planet-
Lab and the Grid typically do not use a common file systeni-ab hosts assigned to slicecsd 3.
that is shared among all machines. This introduces chakeng
related to maintaining specific versions of code, setting up
environment variables, or gathering output from all maebkin description (see Figure 3) and executes the specified action
hosting the experiment. The resultis that researchersegtot The XML description language is hierarchical. Projects are
applications in wide-area environments often end up spendiefined at the highest level, and they contain software, gonfi
ing more time in the cycle’s deploy and debug phases than iaration, and application components. Software components
development. Plush provides much of the needed functionallescribe where to locate the desired software packages, and
ity to ease the burden of deploying and debugging distribute how to transfer and unpack the files on the remote machines.
applications, allowing users to spend more time develaping Configurations contain “cluster” components that describe
4.1 Architecture one or more clusters of machinqs. Clusters define exactly
. o what physical resources are desired for each group of ma-
The main components of Plush are an application controllegpines requested. Each cluster component also specifids wha
that typically runs on a user's workstation and a lightweigh yre\iously defined software components should be installed
client process that runs on all nodes hosting the applieatio j, aqdition to specifying what exact commands should be run
Though the remainder of this discussion focuses on Planegy, gach host during execution, and what resource pool to use
Lab, the set of managed clients is not limited to one platform¢, locating resources. The application components of the

The same controller has _the al?ility to manage cIientg acrosgroject specify the configurations that should be run. By us-
all supported platforms, including PlanetLab, the Gridd an " mytiple configurations it is possible to define multiple

any local clusters maintained at the users’ site. Figure-2 deyppjications at once and execute them sequentially amenti
picts this architecture. _ After creating an available resource pool and parsing an
The application co_ntr(_)(ljllir is the center of control for all ghgiract application description, the controller deteesithe
Plush-managed applicationdJsing authentication informa-  e5oyrces that should host the application. Plush passes th
tion provided by the user, Plush determines an availablé pogeqyired resource description to a user-selectable resour
of resources at startup. For PlanetLab, the user speciies thyiscovery package, which returns a set of physical machines
slice name a_nd Plush looks up all hosts assigned to the sliGeat match the user’s requirements. To bootstrap deploy-
and automatically adds them to the user's resource pool. lfent the Plush controller connects to the selected ressurc
other resources are desired, such as machines in a local cl%d copies the client to all remote hosts—thereby creating a
ter, these are specified separately by the user. ~_ underlying communication mesh—and then starts the client
To run an application, the controller parses an applicatiorp)sh processes. The application controller then instiadis
10ne or more backup controllers can be specified to handleatient r_eqUired software on all remote hosts. SeV_eraI common
failures. The details are omitted for clarity. file transfer protocols are supported by Plush, including sc




N o e “ In order to achieve better resilience in the presence afries],
Plush extends traditional barrier semantics with two new re
Ressf)lﬁfzesHCl{’e"sﬂfl?cfs"HR:iﬂ:ZJ laxations. The first relaxation primitivearly entry, allows
1—l hosts that reach a barrier to be released before all hosts hav
{Start/Monitor]_{ Cloan Up} entered. This prevents progress from stalling due to a small
Lo subset of delayed hosts. The second primitieottied re-
““““““““““““““““““““ lease, allows the user to control the rate of release from a
barrier. These relaxations are discussed in detail in @&6ti

Application
Description

Resource
Pool

Figure 4: Steps taken by Plush controller. 5 Challenges

While Plush addresses some of the requirements described in
wget, and rsync. When the controller is ready to start theSection 3, outstanding issues remain. This section descaib
application, it instructs the clients to execute the appate  few of the challenges we have faced and the lessons we have
command on each remote host. learned thus far in our development of Plush.

Once the application is running, the clients communicate Challenge: Create a language capable of succinctly de-
with the application controller to notify it of status updat  scribing application requirements. The language must be
and potential failures. If a failure is detected, the coifero easy to understand but also expressive enough to support
attempts to recover from it according to the actions enumercomplex scenarios. Additionally, users will need to define
ated in the user’s application specification. Since marly fai each phase of an application’s lifecycle within the languag
ures are application-specific, Plush exports optionabeaks Based on user experiences, we know that it is important to
to the application itself to determine the appropriatetieac  establish a balance between functionality and usabilithén

Plush provides a set of monitoring tools to help the usedesign of the application specification language. If the lan
better understand status on the remote hosts. For examp@gyage gets too complicated, novice users may become intim-
Plush provides a shell interface that allows users to issue idlated by the complexity and give up. However, without sup-
command on all hosts simultaneously. Users also have the oport for advanced features, experienced users will be enabl
tion of redirecting thestdout  from the remote hosts, so that to express all of their requirements.
all output from all hosts is streamed back to the contraler When designing the XML syntax for the application speci-
terminal. Further, Plush monitors the liveness of nodes adfication language of Plush, we decided to require only a small
tomatically and notifies the user when a node fails. Wherset of easily defined attributes, while also supporting & var
the application completes (or upon a user command), Pluséty of specialized features. We believe that this estadxish
stops all associated processes, transfers output datatdackbalance between functionality and ease of use. We separated
the controller’s local disk, performs user-specified clgan the various components of a distributed application and de-
actions, kills the client processes, and disconnects tstsho scribed them using an extensible schema that allows users to
from the communication mesh. The entire process is showmake the application specifications as complicated or lzesic

in Figure 4. desired. In the simplest case, the user only needs to deéne th
. required software (if any), the number of machines desired,
4.2 Barriers and the command to run on the remote machines.

Plush separates an application’s lifecycle phases with syn In the future, we plan to provide a graphical user interface
chronization barriers. Traditionally, synchronizatioarti- ~ (GUI) for Plush. Part of this GUI will allow users to create
ers separate different phases of computation across mult@pplication descriptions without writing XML. In the early
ple processes. Barriers were first introduced as a paralletages of the development of Plush, we designed and built a
programming construct to synchronize individual processo simple GUI that allowed users to run and monitor applica-
interconnected by a high-speed network [13]. In the contextions, create application descriptions, and visualizéower
of a Plush-managed application, barriers separate phéses siatistics about the status of the remote hosts. However we
execution across a set of remote machines. Barriers requifeund that as we continued to develop Plush, the rapid rate of
all hosts involved in a distributed application to reach a-sp change of the code and design of the internal data structures
cific point of execution before continuing to the next phasemade it difficult to maintain a functional GUI. Small changes
For example, barriers separate the file transfer phase fremtin a data structure typically required significant changes t
execution phase to ensure that a suitable set of resourcestie layout of the GUI. The development of the GUI has since
found and prepared with the appropriate software before atbeen postponed and will be resumed again in the upcoming
tempting to start the application. In this same manner, barmonths.
riers can be used to loosely synchronize the beginning of an Challenge: Build a generic infrastructure that meets
execution across all remote hosts. Barriers can also deparahe demands of a variety of distributed applications and
different phases of staged executions, as are often priesentis as powerful as tools designed specifically for a single
Grid-style applications like EMAN. application. Our goal during the development of Plush was
Traditional barriers are not well suited for volatile, wide to build a general infrastructure for application manageime
area network conditions; the semantics are simply tootstric that controls all aspects of the distributed applicatitecicle



without sacrificing important features available in spkogal ~ linked to system libraries. We found that statically lingithe
tools. We quickly realized that the best way to do this wasclient executable that runs on remote hosts helped solse thi
to use the existing tools directly, rather than trying tarei problem in most cases. When statically linking executables
vent them. Hence, Plush is a customizable framework thatowever, it is important to avoid architecture-specifidsys
provides the ability to incorporate existing tools. Useas ¢ calls, such as some cryptographic random number generators
modify their application description to plug in the speizatl Challenge: Achieve forward progress in potentially
tools they need to execute and manage their applicatioiss. It volatile environments. Wide-area environments tend to be
this “pluggable” aspect of Plush that allows users to ruirthe erratic, with failures both common and expected. Numerous
applications in a variety of environments. errors can and often do occur that make it difficult to achieve
One challenge in designing an infrastructure that supportforward progress. These errors include hardware failures,
the ability to plug in arbitrary existing tools is implemérg  software configuration errors, network outages and conges-
the glue code necessary to integrate each tool into Plush. Ution, and application failures. Sometimes even simplesask
fortunately, there are no official standards or common APIssuch as connecting to 100 PlanetLab machines and running
to which developers adhere on PlanetLab. Hence, the intdhe command “hostname,” can prove troublesome to users.
gration of each tool must be addressed separately. Further, machines can fail at any point during execution.
Challenge: Design an application control infrastruc- After experimenting with the use of barriers in Plush on
ture that scales to hundreds or even thousands of het- PlanetLab, we found that traditional barrier semantics@oe
erogeneous machines. Currently, PlanetLab consists of strict to be effective for many applications in volatile env
over 600 machines at approximately 300 different locationgonments. We have found that the distribution of completion
around the world. Many Grid environments contain thou-times for common actions (including file transfers and appli
sands of machines distributed worldwide. In order for ancation execution) across a large set of PlanetLab hosts ofte
application control infrastructure to support distritdit@p-  exhibits a heavy tail. The majority of hosts finish the task in
plications in these environments, it must scale to potéytia a reasonable time period, while a few hosts typically take or
thousands of machines while maintaining acceptable l@fels ders of magnitude more time to complete the same task. Thus,
performance. The initial design of Plush uses a star togologrequiring all hosts to reach a barrier before being simehan
(as opposed to, say, a mesh) for communication, so every hogsusly released often resulted in unacceptable performance
running the application connects directly to the contrdlle Section 4 presented two relaxations (early entry and throt-
The limiting factor in the star design (and one that also cir-tled release) for large-scale distributed computationsreh
cumscribes Plush'’s scalability) is the number of simultarse  maintaining a large set of working machines is often diffi-
connections the controller can support. cult due to the failures and intermittent connectivity irde
During the development of Plush, we experimented withto the environment. We discovered that by using early en-
several different designs that exhibited varying degrees atry (which releases the barrier before all hosts have edifere
success with respect to scalability and performance. ,Firsprogress is not delayed because of a few slow hosts. For ex-
we used a fixed-size pool of threads and looped through reample, if 98 out of 100 requested machines have installed
mote connections. The problem with this approach is that théhe required software and are ready to execute, an eanty-ent
progress of the entire application was limited by a few slowbarrier may release the 98 hosts after some timeout period
hosts. Although we could scale to several hundred machinesyithout waiting an unbounded amount of time for the two
the performance was unacceptable. To avoid the potentimémaining delayed hosts. For increased adaptability,hPlus
bottleneck created by slow hosts, we increased the numbgjives users the option of using a “knee-detecting” algarith
of threads in use so that each connection used two separatedynamically determine the knee of the completion time cu-
threads. The performance of this technique was much immulative distribution function, which triggers the releasf
proved over the fixed-size thread pool. However this apthe barrier early without waiting for the remaining hostkist
proach suffered from a variety of new problems, and ulti-saves users from having to specify a static timeout period.
mately could not scale beyond approximately 200 connecFurther, the user can register an application specific @elilb
tions before some machines ran out of threads. Finally, wevith Plush to specify the exact course of action desired & de
moved to the current event-driven design that uses a singlith the slow machines.
thread and an event loop for execution. The performance The second relaxation, throttled release, is analogous to
of this approach is good, and the number of connections caa counting semaphore. With throttled release, nodes are re-
scale to approximately 800. The limiting factor currently i leased from the barrier at a controlled rate, rather thazaeel
the processor overhead required for XML serialization. Weing all nodes simultaneously. This may be used, for exam-
are working on ways to trim the XML and reduce this over- ple, to limit the number of nodes that simultaneously perfor
head, and hopefully increase the scalability further. network measurements or software downloads. During the
Another problem that arises in heterogeneous environbarrier configuration phase, users can specify an exact rate
ments is inconsistencies in execution environments. FEhis iof release from the barrier, or they can choose to let Plush
particularly problematic when executables are dynamjcall dynamically determine the optimal release rate. In the lat-
ter case, Plush adapts to changing conditions in at attempt t
find the release rate that provides the most throughput éor th

2In future versions of Plush, we plan to remove the star anld lunore
scalable topology, perhaps based on a tree.



mote machines, and scripts must be manually created for each
managed application.

SmartFrog [11] also manages distributed applications. It
is a framework for describing, deploying, and controllirig+d
tributed applications. It consists of a description larggiand
a collection of daemons that manage distributed applioatio
Unlike Plush, SmartFrog is not a tool that can be used to in-
teractively control distributed applications. It is a frework
for building configurable systems and has components with

Host count

10 Simultaneous Transfers ------

25 Simultaneous Transfers —— similar functionality to those in Plush, but does not previd
100 Simultaneous Transfers . . . .
- Adaptive Simultaneous Transfers —x— packaged product or solution for managing applications.
0 100 200 300 400 500 In the Grid community, there are several projects that have
Elapsed time (sec) similar goals as Plush. Condor [4] is a workload manage-

Figure 5: Software transfer (10 MB file) completion time from ment system for compute-intensive jobs. Pl_ush is similar to
a local host to 100 PlanetLab hosts using throttled releaseot ~CONdor in that both deploy and manage distributed execu-
limit the number of simultaneous file transfers. 25 simultare-  tions. Condor is optimized for leveraging underutilized cy
ous transfers completes quicker than 100 simultaneous tran  cles in desktop machines in an organization, where each job
fers. The “adaptive” curve shows the results of letting Plua  or application is generally compute-bound and highly par-
dynamically determine the release rate based on the curremtet-  allelizable. On the other hand, Plush is designed to deploy
work conditions. and manage naturally distributed tasks, which may include
requirements for the concurrent scheduling of resources ov
application. Figure 5 shows the benefits achieved using thigeveral sites. Condor proyldes its own batch schgduler, and
semantic for simultaneous file transfers. can schedule resources with a much greater efﬁuer_wcy the}n
can Plush. Plush supports a wider range of scheduling poli-

Even though the file transfer example shown in Figure cies, however, pushing those decisions to external resourc
can achieve better performance with a statically defined re= ™’ P 9

lease rate, it is important for Plush to have the capabitity t a!loc_ators. Sinpe I_Dlush_does not focgs on a singlg class of
adapt to changing conditions (shown in the “adaptive” curved'Str!bUted applications, it supports a wider range oftieas
in the graph). Itis difficult to predict what the network cond to g’uklgest/hzngggdgr'. ther Grid act that id

tions will be like in the future, and while using 25 simultane ' ver [3] is another Grid project that provides

. . a set of programming tools and an execution environment
ous transfers completed the fastest in the experiment ShOWPor easing broaram develooment in comoutational arids. In
it is very likely that the same setting will not perform bett a g prog P P grias.

all times. In most cases the user does not know what the optF:rt'iilirén?sri?linfogu dsefnoneaggl'fiﬂons-rﬁv:?;i; eds:ulgze_
mal release rate should be before running the application. | qul ge during execution. ploy

addition, the use of throttled release barriers is not &ochiio ment process in GrADS is similar to Plush. Once the appli-

: ! . cation starts execution, GrADS maintains resource reguire
just file transfers across the wide area. It may be even moré

difficult to accurately predict a release rate for other usfes n:en;s for cto;nputte :nter:3|v$hSC|entl1;|c apphcatu:?s thﬁog
throttled release barriers. stop/migrate/restart cycle. There is less support for a

range of failure recovery actions than in Plush. vGrADS is
6 Related work an extension of the GrADS project that adds an abstraction

Several tools are available for easing remote job executior{ayer for *virtual grids,” and provides added support foidr

including cfengine [5], gexec [10], and vxargs [22] among ECONOMIes. _ _
others. In general, these products provide a subset of the F€'haps the mostwidely used software package for grid de-

functionality that Plush provides. In addition to remote jo VeloPment, the Globus Toolkit [7] is a framework for build-

execution, Plush reacts to a variety of failure conditigmey "9 Grid systems and applications. Several components of
provides methods for automatic reconfiguration in responsglopuS are similar to Plush. _The Globus Resource Speci-
to changing conditions. Further, existing tools for reseur f|cat|o_n_Language (RSL)_prowdeg an a_bstrac_t language for
discovery and allocation can be plugged into Plush, pragdi describing resources. It is very similar in design to our ap-

more advanced functionality than most remote job executioICation description language. The Globus Resource AHoc
tools provide. tion Manager (GRAM) also provides much of the same func-

Aside from general-purpose remote job execution tOob:uonallty as Plush does. It processes requests for resgurce

there are a few projects that focus on managing distribyied a a_llocates the r;zsourf:e(sj:ﬁand margages actl\I/e Jr?bs ('jn r(];”d eln-
plications. The PlanetLab Application Manager [12] presd ylronment_s. The main di erence etwee_n Plush and the tools
many of the same features as Plush does for long-running sdP Globus is that Plush provides a user interface where users

vices on PlanetLab, but does not support short-lived agplic can directly interact wi.th their applications. Since Glslwmia
tions as easily. It is designed to help maintain application framework, each application must use the APIs to create the

that provide a service and require high availability. It sloe desired functionality. In the future, we plan to integrahesh

not provide a way to interactively execute commands on re\-’v'th some of the Globus tools, such as GRAM and RSL. In



this scenario Plush will act as a front-end user interface fo [6] EMAN. http://ncmi.bcm.tmc.edu/EMAN/
the tools available in Globus.

7 Status and conclusion

Plush is designed to meet the needs of a wide range of Pla
etLab users. By explicitly considering three differentssias
of distributed applications that often run in large-scad-h
erogeneous environments such as PlanetLab, we attemptefh] 1. J. Freedman, E. Freudenthal, and D. Maziéres. De-

to extract a general set of requirements for application-man mocratizing content publication with coral. MSDI
agement. While these requirements are admittedly challeng 2004.

ing, Plush represents the culmination of two years of devel-
opment aimed at addressing these challenges in a stredmlingLO] gexec.http://www.theether.org/gexec/
and powerful manner.

Plush is far from a panacea; experience has repeated
shown that completeness and ease of use are often at odds. AR o L
In these instances, Plush attempts to err on the side oflusabi automatic ignition of distributed applications. —HP
ity, instead leveraging the ability to interface with exiaf, OVUA, 2003.
third-party tools where appropriate. Plush eases the hurdqlz] R. Huebsch. PlanetLab application managetp://
of deploying and maintaining distributed applications by f
cusing on providing the following key functionality:

[7] 1. Foster. A globus toolkit primer, 2005.

nl8l I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services Archi-
tecture for Distributed Systems Integration. GGF, 2002.

[91] P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau,
P. Murray, and P. Toft. SmartFrog: Configuration and

appmanager.berkeley.intel-research.net

. o . [13] H. F. Jordan. A Special Purpose Architecture for Finite
¢ An extensible specification language for describingava- ~ glement Analysis. IHCPP, 1978.

riety of distributed applications
[14] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat.

o Interfaces for defining application-specific tools for var- Bullet: High bandwidth data dissemination using an
ious stages of the distributed-application life cycle overlay mesh. IlBOSP, 2003.

e Automated application monitoring and reconfiguration [15] D. Oppenheimer, J. Albrecht, D. A. Patterson, and

A. Vahdat. Design and implementation tradeoffs for

e Relaxed synchronization semantics for failure-prone : ;
wide-area resource discovery. HPDC, 2005.

wide-area environments

Plush is currently in daily use. Source, binaries, and moré16] V- S. Pai, L. Wang, K. Par!<, R. Pang, and L. Peterson.
information can be found ahttp://sysnet.ucsd. The dark side of the web: An open proxy’s view. In
edu/plush/ . HotNets-I1, 2003.
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