32

JEANNIE ALBRECHT, RYAN BRAUD,
DARREN DAO, NIKOLAY TOPILSKI,
CHRISTOPHER TUTTLE, ALEX C.
SNOEREN, AND AMIN VAHDAT

managing distrib-

uted applications
with Plush

Jeannie Albrecht is an Assistant Professor of Comput-
er Science at Williams College in Williamstown, Mas-
sachusetts. She received her Ph.D.in Computer Sci-
ence from the University of California, San Diego, in
June 2007 under the supervision of Amin Vahdat and
Alex C.Snoeren.

Jjeannie@cs.williams.edu

Ryan Braud is a Ph.D. student at the University of Cali-
fornia, San Diego, where he works under the direction
of Amin Vahdat in the Systems and Networking Re-
search Group. His interests include high-performance
file distribution protocols and tools for building and
debugging distributed systems,among others.

rbraud@cs.ucsd.edu

Darren Dao is a graduate student at the University of
California, San Diego, where he works under the di-
rection of Amin Vahdat in the Systems and Network-
ing Research Group. He received his B.S.in Computer
Science from the University of California, San Diego,
in 2006.

hdao®@ucsd.edu

Nikolay Topilski is pursuing his M.S.in Computer Sci-
ence at the University of California, San Diego, where
he also received his B.S. He works with Amin Vahdat,

and his area of concentration is distributed network
applications.

ntopilski@gmail.com

Christopher Tuttle is a Software Engineer at Google in
Mountain View, California. He received his M.S.in
Computer Science from the University of California,
San Diego, in December 2005 under the supervision
of Alex C. Snoeren.

ctuttle@google.com

Alex C.Snoeren is an Assistant Professor in the Com-
puter Science and Engineering Department at the
University of California, San Diego, where he is a
member of the Systems and Networking Research
Group. His research interests include operating sys-
tems, distributed computing, and mobile and wide-
area networking.

snoeren@cs.ucsd.edu

Amin Vahdat is a Professor in the Department of
Computer Science and Engineering and the Director
of the Center for Networked Systems at the Universi-
ty of California, San Diego. Before joining UCSD in
January 2004, he was on the faculty at Duke Universi-
ty from 1999 to 2003.

vahdat@cs.ucsd.edu

;LOGIN: VOL. 33, NO. 1

BUILDING AND MANAGING DISTRIB-
uted applications is difficult. In addition to
the usual challenges associated with soft-
ware development, distributed applications
are often designed to run on computers
spread across the Internet, and therefore
they have to be robust to highly variable32
network conditions and failures that are in-
evitable in wide-area networked environ-
ments. As a result, developers spend a sig-
nificant portion of their time deploying and
debugging distributed applications on re-
mote machines spread around the world.
Plush aims to ease this management bur-
den for a broad range of distributed appli-
cations in a variety of execution environ-
ments.

No one can deny the success of the Internet. With
the growing popularity of pocket-sized network-
capable devices such as the iPhone, the Internet
has become an integral part of our society, working
its way into every aspect of our lives. As the num-
ber of Internet users continues to increase, the user
demand for Internet-based services, including
banking Web sites, news Web sites, and search en-
gines, also increases. In response to this growth,
many of these services require more computing
power to achieve acceptable levels of performance.
In short, companies need more than a single com-
puter—or even a single room full of computers—
to satisfy the computing needs of their customers.
Thus, more and more services are turning to dis-
tributed applications, which spread their workload
among a distributed set of computers, to help meet
the user demand.

Distributed applications have the potential to dras-
tically improve the scalability, fault tolerance, and
reliability achieved by an Internet-based service.
However, building distributed applications also in-
troduces many new challenges to software devel-
opers. When using a distributed set of resources,
developers need mechanisms for locating and con-
figuring remote computers and for detecting and
recovering from the failures that are inherent in
distributed environments. In response to these
challenges, many developers write complex scripts
to help automate the tasks of connecting to re-
sources, installing the needed software, starting the
execution, and monitoring performance. Most of
these scripts are customized to work for a specific
application in a specific execution environment,



;LOGIN: FEBRUARY 2008

and thus they are not easily extended to help other developers with similar
goals.

We want to find a solution to this problem by providing a general-purpose
distributed application management system that simplifies these manage-
ment tasks for a broad range of applications in a variety of execution envi-
ronments. Ultimately, we hope to eliminate the need for customized man-
agement scripts for deploying, running, and monitoring distributed applica-
tions in any wide-area networked environment.

Plush to the Rescue

Our solution to the problem is a system called Plush. Plush is a distributed
application management infrastructure that leverages the insight that there
are many similarities in the common tasks provided by customized manage-
ment scripts. In particular, the first step is typically to locate and configure
resources capable of hosting the application. After the resources are config-
ured with the required software, the execution is started. Upon the comple-
tion of an execution, the scripts perform “cleanup” actions to ensure that
the resources are left in a usable state for future executions. Rather than
reinventing the same functionality repeatedly for each application and each
execution environment, Plush automates these tasks and allows developers
to define their application- and environment-specific details separately,
making it easy to run applications in different distributed environments
without rewriting or recreating customized scripts.

By eliminating the need for customized management scripts, Plush allows a
wider range of developers to deploy and manage distributed applications
running on hundreds of machines worldwide. Plush provides software de-
velopers with a user-friendly graphical user interface (GUI) called Nebula so
that even novice developers can experiment with a distributed set of resources
for hosting their applications. For more experienced developers, Plush also
provides a command-line interface for managing distributed applications.
Finally, for developers who wish to interact with the functionality of Plush
from within a program or script, Plush exports an XML-RPC interface.

Client

'

FIGURE 1: THE PLUSH CONTROLLER CONNECTS TO THE PLUSH
CLIENTS RUNNING ON THE REMOTE RESOURCES.

Aside from the user interfaces, the architecture of Plush consists of two main
components: the controller and the client. In most usage scenarios, the Plush
controller runs locally and responds to input received from the software de-
veloper. The clients run on all remote resources involved in an application. In
order to achieve scalability in Plush, the controller and clients build a com-
munication tree for exchanging messages (Fig. 1). After establishing this tree,
the controller communicates with the clients throughout the duration of an
application’s execution, both by sending instructions and by exchanging ap-
plication management and status information. The Plush user interfaces in-
teract directly with the controller, giving the developer a way to “remotely
control” the resources hosting the application in a user-friendly way.

MANAGING DISTRIBUTED APPLICATIONS WITH PLUSH 33



34

;LOGIN: VOL. 33, NO. 1

Plush in Action

To gain a better understanding of how Plush works, in this section we de-
scribe the tasks that Plush performs to manage a typical distributed applica-
tion. These tasks are illustrated in Figure 2. More detailed information about
the design and implementation of Plush can be found in our paper [1].

STEP O: DESCRIBE THE APPLICATION

Before Plush can manage an application, the developer must provide the
Plush controller with a description of the application and the desired re-
sources for hosting the application. Typically, this is accomplished by creat-
ing a Plush application specification. When using Nebula (the Plush GUI),
software developers create their application specification using a set of ap-
plication “building blocks” that can be combined in an arbitrary fashion to
define the custom control flow for their executions. There are separate
blocks for describing resources and processes, so that developers are free to
deploy applications on different resources without redefining any aspect of
their execution. A resource in Plush is any computing device capable of con-
necting to the network and hosting an application. Developers use arrows
connecting blocks to indicate the order in which various processes run
within an execution. The right side of Figure 3 illustrates a sample applica-
tion specification that uses the Plush building blocks. For command-line
users, an XML file defines the application specification, which is loaded at
the Plush prompt at startup.

Describe LeEiace Start Monitor
o | Configure > o > . > Cleanup
Application Application Application
Resources

i 1t

FIGURE 2: TASKS COMPLETED DURING A TYPICAL PLUSH
MANAGED EXECUTION.

STEP 1:

LOCATE AND CONFIGURE DESIRED RESOURCES

Once a developer creates an application specification, Plush has all of the in-
formation it needs to manage and configure a specific distributed applica-
tion using a particular set of resources. From the developers’ perspective,
their job is done! At this point they can sit back and let Plush assume con-
trol of the application. After parsing the application specification provided
by the developer, the Plush controller begins to locate and configure the de-
sired resources. Depending on the target execution environment, this may
involve using an external resource discovery service such as SWORD [7] to
find resources with specific characteristics or creating new virtual machines
for hosting the application with Shirako [5] or Usher [6]. Once the con-
troller creates or locates the resources, the controller installs the Plush client
software and then initiates a connection to each client. The clients’ first task
is to install the required software on the remote resources. Each client sepa-
rately obtains the needed software packages and runs any necessary installa-
tion commands and then sends a message to the controller indicating that
software installation is complete.

STEP 2:

START THE APPLICATION

After the controller determines that a sufficient number of resources have
been successfully configured, the controller instructs each client to start the



;LOGIN: FEBRUARY 2008

application’s execution. The clients continue to inform the controller about
application status changes throughout the duration of the execution. Some
distributed applications operate in phases, where each resource involved in
the application must compete a specific phase of execution before any re-
source proceeds on to the next phase. These applications typically require
some form of distributed synchronization to ensure that the phases execute
correctly across all resources. Plush provides support for a range of synchro-
nization requirements in distributed applications [2]. In order to provide
this synchronization, the controller maintains a list of each client’s status at
all times. The controller then determines when it is safe to allow an applica-
tion to move on to the next phase of execution, and it instructs the clients
accordingly. Therefore, not only does Plush manage the initial starting of the
application, but it also ensures that multi-phased applications start each
phase of execution at the correct time.

STEP 3: MONITOR THE APPLICATION’S EXECUTION

Detecting and recovering from failures is one of the most challenging as-
pects of running an application on resources spread around the world. To
accomplish this in Plush, the clients running remotely monitor the status of
the application and resources. If a client detects a problem, ranging from in-
sufficient disk space to unexpected program termination, the client sends a
message to the controller describing the failure. The controller then decides
how to recover from the problem. Plush provides built-in mechanisms for
recovering from many common failures, and in most cases, Plush is able to
detect and recover from errors before the developer is even aware that a
problem occurred. Some failures may require finding new resources for
hosting the application, whereas others may only require restarting a failed
process on a single resource. For more elaborate application-specific recov-
ery, developers can use the Plush XML-RPC interface to implement their
own failure-recovery routines and then register to receive callbacks from the
controller when Plush detects failures. The GUI also lets users visualize
their execution with color-coded dots on a map of the world (shown on the
left side of Fig. 3), allowing them to easily monitor the status of their appli-
cation by simply watching the dots change colors. Thus developers who use
Plush no longer need to spend a significant portion of their time writing
monitoring scripts and babysitting executions running on a distributed set
of machines in order to keep their applications running.

FIGURE 3: LEFT: NEBULA SHOWING PLANETLAB [4] RESOURCES
RUNNING AN APPLICATION. RIGHT: AN APPLICATION SPECIFI-
CATION BUILT USING PLUSH APPLICATION BUILDING BLOCKS.

STEP 4: CLEAN UP RESOURCES

The final task that Plush completes is to clean up the resources that host the
application so that they are left in a usable state for future applications or fu-
ture phases of execution. The cleanup procedure ensures that all processes
exit cleanly, removing any unnecessary files and returning the state of each

MANAGING DISTRIBUTED APPLICATIONS WITH PLUSH 35



36

;LOGIN: VOL. 33, NO. 1

resource to what it was before the execution began. In general, this proce-
dure may run at any time during the application’s execution, although in
most applications it is typically only run between phases or at the comple-
tion of the execution. When the controller receives messages from all clients
indicating that the execution has ended (or receives input from the develop-
er indicating that the execution should be aborted), the controller instructs
the clients to kill any remaining processes associated with the application.
After killing all processes, the clients also remove any unnecessary files

that were created as a result of the execution. Once all clients complete the
cleanup actions, the controller instructs the clients either to continue with
the next phase of execution or to disconnect from the Plush communication
tree and stop the client process.

Performance Evaluation

To demonstrate how well Plush recovers from failures in a wide-area net-
worked environment, Figure 4 evaluates Plush’s ability to detect host fail-
ures and subsequently to find and configure replacement resources for
SWORD running across PlanetLab. SWORD is a wide-area resource discov-
ery service that requires each host to download and install a 38-MB software
package before starting the execution. PlanetLab is a distributed execution
environment consisting of 800+ resources spread across 40+ countries. In
this experiment, Plush starts SWORD on 100 randomly selected PlanetLab
machines, including some machines behind DSL network links. After 1250
seconds, we manually kill SWORD on 20 of the initial 100 machines to sim-
ulate host failures. The Plush clients independently notify the controller of
the failures, and the controller locates and configures replacement resources
for the ones that failed. The SWORD service is fully restored across 100 ma-
chines 1000 seconds later.

Using Plush to manage this application allowed us to avoid writing a custom
script that probed for and recovered from host failures. Particularly for long-
running services such as SWORD, developers need automated mechanisms
for monitoring the behavior of the execution and coping with problems that
arise. It is unrealistic to expect the developer of a service to constantly mon-
itor its performance, but at the same time, a service must quickly and auto-
matically recover from failures since other developers may rely on the func-
tions that it provides. When using Plush, clients running on the PlanetLab
resources monitor the service’s performance at all times and automatically
recover from failures. More details about this experiment are discussed in
the paper by Albrecht et al. [1].

100
80 -
60 -

40

20 -
Running
o ‘ ‘ Failed ——

0 500 1000 1500 2000 2500
Elapsed time (seconds)

FIGURE 4: PLUSH INITIALLY STARTS SWORD ACROSS 100 PLAN-
ETLAB RESOURCES. AFTER 1250 SECONDS, 20 OF THESE RE-
SOURCES FAIL. PLUSH AUTOMATICALLY DETECTS AND RE-
PLACES THE FAILED HOSTS AND RESTORES THE APPLICATION.

Number of hosts




;LOGIN: FEBRUARY 2008

How Do | Use Plush?

Plush is an open-source, publicly available software package that can be ob-
tained from the Plush Web page [8]. Plush is implemented in C++, and it
runs on most UNIX-based platforms. It depends on several C++ libraries, in-
cluding those provided by xmlrpc-c, curl, xml2, zlib, math, openssl, read-
line, curses, boost, and pthreads. In addition, the command-line user inter-
face requires packages for lex and yacc. (We typically use flex and bison.) If
you intend to use Plush on PlanetLab, the controller uses several simple Perl
scripts for interacting with the PlanetLab Central database. The only re-
quirement related to network connectivity is that the Plush controller must
be able to SSH to all remote resources.

Nebula is also publicly available. Nebula is implemented in Java and runs on
any platform that supports Java, including most UNIX-based platforms,
Windows, and Mac OS X, among others. Nebula communicates with the
Plush controller using the XML-RPC programmatic interface. XML-RPC is
implemented in Nebula using the Apache XML-RPC client and server pack-
ages. One additional benefit of using Nebula is that because it communi-
cates with the Plush controller solely via XML-RPC, it is not necessary to
run Nebula and the Plush controller on the same machine. If Nebula and
Plush run on separate machines, after starting Nebula locally, developers
have the option, using the Nebula preference menu, of specifying a Plush
controller process running remotely.

Plush is currently in daily use worldwide. We have used Plush to successful-
ly manage a variety of distributed applications, ranging from long-running
services to short-lived, multi-phased computations. These applications were
run in several different resource environments, including PlanetLab, Model-
Net [9], and clusters of Xen [3] virtual machines. Although user feedback
thus far has been largely positive, our goal is to make Nebula and Plush as
user-friendly as possible, so we welcome all comments, suggestions, and
feedback. If you would like further information, please visit our Web site
(http://plush.cs.williams.edu), and feel free to contact any of the authors if
you have additional questions.

REFERENCES

[1]]. Albrecht, R. Braud, D. Dao, N. Topilski, C. Tuttle, A.C. Snoeren, and
A. Vahdat, “Remote Control: Distributed Application Configuration, Man-
agement, and Visualization with Plush,” Proceedings of the USENIX Large In-
stallation System Administration Conference (LISA), 2007.

[2]]. Albrecht, C. Tuttle, A.C. Snoeren, and A. Vahdat, “Loose Synchroniza-
tion for Large-Scale Networked Systems,” Proceedings of the USENIX Annual
Technical Conference (USENIX), 2006.

[3] P Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, 1. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” Proceed-
ings of the ACM Symposium on Operating System Principles (SOSP), 2003.

[4] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peter-
son, T. Roscoe, T. Spalink, and M. Wawrzoniak, “Operating Systems Support
for Planetary-Scale Network Services,” Proceedings of the ACM/USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI), 2004.

[5] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. G. Yocum,
“Sharing Networked Resources with Brokered Leases,” Proceedings of the
USENIX Annual Technical Conference (USENIX), 2006.

MANAGING DISTRIBUTED APPLICATIONS WITH PLUSH 37



38

;LOGIN: VOL. 33, NO. 1

[6] M. McNett, D. Gupta, A. Vahdat, and G.M. Voelker, “Usher: An Extensi-
ble Framework for Managing Clusters of Virtual Machines,” Proceedings of
the USENIX Large Installation System Administration Conference (LISA),
2007.

[7] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, “Design and
Implementation Tradeoffs for Wide-Area Resource Discovery,” Proceedings of
the IEEE Symposium on High Performance Distributed Computing (HPDC),
2005.

[8] Plush Web page: http://plush.cs.williams.edu.

[9] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kosti'gJ. Chase, and
D. Becker, “Scalability and Accuracy in a Large-Scale Network Emulator,”
Proceedings of the ACM/USENIX Symposium on Operating System Design and
Implementation (OSDI), 2002.





