
Distributed Application Management using Plush

Jeannie Albrecht, Christopher Tuttle, Alex Snoeren, Amin Vahdat
University of California, San Diego

{jalbrecht, ctuttle, snoeren, vahdat}@cs.ucsd.edu

1 Introduction
Recent computing trends have shown an increase in the
demand for large-scale, distributed, federated computing
environments. Two of the more popular environments
that have emerged are the Grid and PlanetLab. At a high
level, these systems are similar in many ways; both are
comprised of a set of heterogeneous interconnected ma-
chines that allows secure resource sharing for a variety
of different users and applications. However, at a lower
level, the systems are very distinct in the sense that they
were designed to solve different types of problems, and
therefore have fundamental differences that make it dif-
ficult to develop and deploy applications on both plat-
forms. As a result, application designers and researchers
create software that runs on either the Grid or Planetlab,
but not both.

We propose to solve this problem by describing a
common abstraction for both PlanetLab and Grid ap-
plications. Further, we present Plush–a tool that imple-
ments the distributed application abstraction by provid-
ing a pluggable and extensible infrastructure allowing
users to customize their environment for running exper-
iments on both PlanetLab and the Grid.

2 Distributed Application Life Cycle
In order to create a unified environment for running both
Grid and PlanetLab services, it is essential to identify the
key abstractions that describe the life cycle of any dis-
tributed application independent of the platform within
which it runs. There are five key components of this
life cycle, includingexperiment specification, resource
discovery, resource allocation, service deployment, and
application control(as shown in Figure 1). This section
describes the details involved in these components.

2.1 Experiment Specification

The experiment specification identifies all aspects of an
application or service execution. For each project, it de-
scribes the software components involved in the experi-
ment, including how to access the software, installation
methods, and processes to run on each machine. These
details are specified using an extensible description lan-
guage that also captures desired resource specifications,
declares how these resources should be selected, and de-
fines any other information needed to correctly instanti-

Figure 1: Distributed application lifecycle abstraction.

ate and run the application.

2.2 Resource Discovery

The goal of the resource discovery phase is to find the
best set of physical resources for the distributed appli-
cation. This stage in the life cycle parses the resource
description for each cluster in the experiment specifi-
cation, and then locates the appropriate set of physical
resources to satisfy each request. To accurately fulfill a
request for resources, the resource discovery mechanism
requires knowledge of the current resource usage for all
nodes. From a logical standpoint, the role of the resource
monitors is to populate a measurement database that the
resource discovery mechanism can later query.

2.3 Resource Allocation

The resource discovery infrastructure interacts directly
with the resource allocation system. Typically, the re-
source discovery system finds a set of resource alterna-
tives, and the resource allocator gets permission to use at
least one of those alternatives. The resource allocation
methods depends on the administrative domain of the
selected hosts. If a system provides a best-effort pool
of resources, the resource allocator does nothing. If the
system uses a reservation system, the resource alloca-
tor acquires a reservation. If the system uses an auc-
tion model, the resource allocator submits bids for the
desired resources. Regardless of the resource discov-
ery and allocation methods being used, the result is the
same. Once this phase has completed, the experiment
will have bound to a set of resources that satisfy the spec-
ified requirements.

2.4 Service Deployment

The third phase in the distributed application life cycle
is service deployment. The purpose of the deployment
system is to prepare the physical hosts with the correct

� � � � � � � � � � �

� � � 	
 � � �
 � � 	 � � � �

� � � � �
� � � � � �

 � �

�
 � � � �
� � � � � � � � � �

�
 � � � �
� �
 	 � � � � 	 � �

�
 � � � �
� �
 	 � � � � 	 � �

�
 � � � �
� �
 	 � � � � 	 � �

�
 � � � �
� �
 	 � � � � 	 � �

�
 � � � �
� � � � � �
 � � � � � �

�
 � � � �
� �
 	 � � � � 	 � �

�
 � � � �
� � � � � �
 � � � � � �

� � � � � � � � � ! � �

Figure 2: Plush architecture.

processes according to the experiment specification, and
then to start the experiment running according to the de-
scription. This typically involves copying, uncompress-
ing, and installing the software on the selected hosts.
Once the software environments on the hosts are ready,
the experiment can be started by running the requested
command as defined in the experiment specification.

2.5 Application Control

The fifth and final phase of the application life cycle is
the application control phase. This involves monitoring
the hosts for failure, monitoring the application for indi-
cations of failure, and providing hooks into application-
specific code for verifying liveness. The purpose of this
component is to maintain application liveness as much
as possible, and to provide detailed information about
errors, should they arise.

3 Plush Overview
Plush is an extensible execution management system
for large-scale distributed systems, including PlanetLab
and the Grid. It provides an implementation of the dis-
tributed life-cycle abstraction described in the preceding
paragraphs. Each phase of the life cycle is viewed as a
black box in Plush, where different underlying mech-
anisms can be swapped out and interchanged without
changing the application itself.

3.1 Architecture

The main components of Plush consist of an experiment
controller that would typically run on a local worksta-
tion, and a light-weight client process that runs on all re-
mote hosts involved in an experiment. The set of clients
that a single experiment controller manages is not lim-
ited to one platform. As shown in Figure 2, the same
controller has the ability to manage clients across all
supported platforms, including PlanetLab, the Grid, and
any local clusters maintained at the users’ site.

When a user starts the Plush experiment controller
on a local workstation, they pass in any information
needed for authentication and access to resources that al-

" # $ % & ' (%) *
+ % , - & ' $ * ' .)

/ % , . 0 & - %
1 . . 2

3 4 5 4 6 7 8 4 9 : ; < 6 4 9 = : > > 4 6 7 7 :
8 4 9 : ; < 6 4 9

? < 4 @ A < 4
B C @ 4 < D E 4 > 7

8 ; > A > F G : > D 7 : <
B C @ 4 < D E 4 > 7

= 5 4 A > H @

B C @ 4 < D E 4 > 7 = : > 7 < : 5 5 4 <

Figure 3: Plush experiment controller.

lows Plush to create a pool of resources available to the
user. The user then passes in an experiment description
(XML document) that describes the components needed
to run the application. This is the experiment specifica-
tion phase of the distributed application life cycle.

Next, the controller passes the resource specification
from the experiment description on to the resource dis-
covery phase. The resource discovery mechanism finds
the resources that meet the specified requirements, and
passes the result on to the resource allocator. The al-
locator determines if the user has access to those re-
sources, and if necessary, makes the appropriate reserva-
tions. Once the requested physical resources have been
located and reserved, the Plush controller connects to the
resources. The controller copies the light-weight client
out to all remote hosts creating an underlying commu-
nication mesh, and then starts the client process. The
controller communicates with the clients to transfer the
required software out to all remote hosts to start the ser-
vice deployment phase.

Application control is the final phase of the life cycle.
Here the client processes running on the remote hosts
communicate with the main controller to notify the con-
troller of status updates and potential failures. The con-
troller attempts to recover from failures detected. Once
the experiment is running, Plush provides monitoring
tools to help the user better understand what is hap-
pening on the remote hosts. When the experiment has
completed, Plush stops all application processes, per-
forms user-specified clean up actions, kills the client
process, and disconnects the hosts from the communi-
cation mesh. Figure 3 shows this entire process.

3.2 Implementation Status

We have recently released a publicly available ver-
sion of Plush for application management on Planet-
Lab. More information on the latest release can be
found at http://ramp.ucsd.edu/projects/
plush/. We are currently working to inter-
grate application management for the VGrADS ex-
ecution system (http://www-csag.ucsd.edu/
projects/VGrADS/) into Plush. We expect to re-
lease a version of Plush with these capabilities later this
summer.

