
Developing and Evaluating Novel Network Protocols on Wide-Area
Testbeds

Jeannie R. Albrecht
Master’s Project Report

December 11, 2003

Abstract

As the popularity and availability of shared global
testbeds continue to grow, researchers are placing less
value on results obtained in simulation environments, and
focusing more on the results obtained within wide-area
testbeds such as PlanetLab. One consequence of this
trend is that researchers are no longer able to control their
experimental environment to the same degree that they
can in simulation. Researchers on the wide-area can only
hope to locate a set of nodes that possess the desired qual-
ities at runtime. Currently, there is no service running on
PlanetLab that supports global queries of this kind.

In this paper we present one solution to the problem of
global resource querying on PlanetLab. Starting with an
evaluation of TFRC, a novel network protocol, we de-
scribe some of the challenges that arise when testing ex-
perimental systems and protocols on wide-area testbeds.
Focusing specifically on the problem of resource discov-
ery, we propose a tool for use on PlanetLab that locates
a set of machines based on a user-defined description of
the desired testing environment. Users specify their re-
quest through an expandable XML query language. We
describe the design and architecture of our tool and query
language, and show the results from preliminary perfor-
mance evaluations.

1 Introduction

When developing and evaluating novel network proto-
cols, researchers typically go through several phases of
experimentation. Initially, research is performed within
a sophisticated simulation environment, such as ns2 [14].
Researchers have total control over the conditions their
protocols are exposed to when using a simulator, and the
same experiments are easily repeated. However these ex-
periments often do not allow users to run real code, and
they typically do not scale beyond a few hundred nodes.
Many researchers use network emulators, like Model-

Net [19], in addition to simulation, to further evaluate
their systems. While not quite as controlled as the simula-
tors, the latest network emulators give researchers many
options to test their protocols. They offer the advantage
over simulators of being able to run real code in real time.
Emulators are also scalable to tens of thousands of nodes.
Although experiments are not as easy to repeat in an emu-
lator, the environment and test conditions are still well de-
fined and fine tuned for specific research needs. The last
round of testing involves running experiments on wide-
area testbeds. Until recently it was difficult to find a large
set of machines distributed across the wide-area that were
open to experimental network research. However with
the creation of shared global network testbeds, such as
PlanetLab [16], researchers are now able run their code
on machines spread around the world.

Before a new protocol can be publicly released, it must
be thoroughly tested in an Internet-like environment to
see how it will behave. One of the biggest criticisms of
network simulators and emulators is that they do not ac-
curately represent the Internet. There are currently no re-
alistic models of the Internet available [7], which makes
it difficult to simulate or emulate realistic network condi-
tions. As a result, more and more researchers are turning
to wide-area experimentation as a final test before dis-
tributing code to the public. Only in live wide-area test-
ing do we know how a protocol will perform and interact
with other systems on the Internet. There are many chal-
lenges that arise when using a shared wide-area testbed
that do not exist in simulated and emulated environments.
Most importantly, researchers no longer have total con-
trol over the tests they run or the machines on which they
run. Changing network conditions, unconfigurable en-
vironments, and unrepeatable experiments make experi-
mentation on the wide-area frustrating and tedious.

Researchers have responded to the instability of wide-
area testbeds by devising ways to monitor their experi-
mental environment. This involves measuring per node
network and resource consumption periodically, and per-

haps even estimating future behavior based on past mea-
surements. While this does not give them the control of
simulation and emulation, it at least provides a way to
know what the current conditions are on the testbed. If a
specific set of conditions are desired for a given experi-
ment, a researcher will attempt to hand-pick a subset of
nodes that meet the desired criteria [4]. There currently
are no system-wide services in place on PlanetLab that
allow for automated resource discovery of this kind.

At the center of all of the problems that occur when
running on the wide-area is the contention for resources
among various users. In controlled testing environments,
researchers do not have to be concerned that users at
remote locations will affect their experimental results.
This is not the case on shared wide-area testbeds. There
are many users accessing the nodes simultaneously, each
one desiring a different set of resources, creating a com-
petitive environment. This has led to the proposal for
several resource management and allocation schemes,
which attempt to distribute the limited resources available
throughout the testbed in a fair manner. These systems,
combined with a way to efficiently discover resources
on the testbed, are the first steps to creating a realistic,
wide-area, testing environment that gives users the famil-
iar control that is present in modern simulators and emu-
lators.

In this paper, we discuss the development and evaluation
of a novel network transport protocol that is an alterna-
tive to TCP. TFRC, or TCP Friendly Rate Control, offers
a less drastic response to loss than TCP, which is desir-
able for applications that require smoother sending rates
than TCP provides. When evaluating this protocol, we
first briefly discuss our experiences within ModelNet, a
network emulator. In this closed environment we were
able to test the behavior of TFRC between one sender and
receiver under very specific network conditions. Further,
we were able to tune parameters to find the optimal con-
figuration for the best performance. We then discuss our
experiences of testing TFRC on the wide-area within the
context of Bullet, a larger application designed for high
bandwidth data dissemination.

Wide-area testing of TFRC and Bullet on PlanetLab mo-
tivated the latter part of our research. As we found our-
selves repeatedly hand creating node lists based on our
desire for a set of nodes with specific characteristics, we
realized the benefits of an efficient resource discovery
system for PlanetLab. In this paper we describe an archi-
tecture and query language for enabling resource discov-
ery on PlanetLab. Using our tool, researchers are able to
smoothly go from specifying resource constraints to au-
tomatic service instantiation on the correct set of nodes.

In constructing our resource discovery tool we are able
to leverage the resource monitoring services that are pub-
licly available on all PlanetLab nodes. By periodically
gathering the measurement data from the nodes and stor-
ing it locally, we are able to perform queries for desired
criteria across all PlanetLab machines. We also define an
expandable query language that allows PlanetLab users
to specify the exact set of resources needed for their ex-
periments. In addition to a general query language, we
allow users to make requests for groups of nodes with
set sizes that satisfy all-pairs maximum latency require-
ments, as well as constraints for cross-group link laten-
cies. We believe this tool gives users the flexibility they
need to create a controlled testing environment.

The remainder of this paper proceeds as follows. Sec-
tion 2 describes the development and evaluation of TFRC
on ModelNet and PlanetLab. Section 3 illustrate the chal-
lenges associated with wide-area testbeds that do not ex-
ist in smaller, more controlled environments. In section 4,
we discuss the problem of resource discovery on Planet-
Lab, and some of the existing services that help make
the problem more tractable. Section 5 outlines the struc-
ture of our solution to resource discovery, and section 6
evaluates its performance. Future work and possible im-
provements to our resource discovery tool are shown in
section 7, followed by a review of some related work in
section 8. Finally, in section 9 we draw conclusions and
summarize our experiences.

2 TCP Friendly Rate Control

This section discusses the development of a new transport
protocol called TCP Friendly Rate Control, or TFRC.
It is provided as an example of a novel network proto-
col that illustrates some of the difficulties encountered
when building and performing evaluations on wide-area
testbeds.

Although most traffic in the Internet today is best served
by TCP, applications that require a smooth sending rate
and that have a higher tolerance for loss often find TCP’s
reaction to a single dropped packet to be unnecessarily
severe. TFRC targets unicast streaming multimedia ap-
plications with a need for less drastic responses to single
packet losses [6]. TCP halves the sending rate as soon
as one packet loss is detected. Alternatively, TFRC is an
equation-based congestion control protocol that is based
on loss events, which consist of multiple packets being
dropped within one round-trip time. Unlike TCP, the goal
of TFRC is not to find and use all available bandwidth,
but instead to maintain a relatively steady sending rate
while still being responsive to congestion. TFRC is less

aggressive than TCP, which is beneficial to applications
where there might be multiple competing flows sharing
the same links.

To guarantee fairness with TCP, TFRC uses the response
function that describes the steady-state sending rate of
TCP to determine the transmission rate in TFRC. The for-
mula of the TCP response function [15] used in TFRC to
describe the sending rate is:

��� ���� �	�
���
���������� �
 ��������������! �� � �

This is the expression for the sending rate
�

in
bytes/second, as a function of the round-trip time " in
seconds, loss event rate # , packet size $ in bytes, and TCP
retransmit value % �'&)(in seconds.

TFRC senders and receivers must cooperate to achieve a
smooth transmission rate. The sender is responsible for
computing the weighted round-trip time estimate " be-
tween sender and receiver, as well as determining a rea-
sonable retransmit timeout value % �'&*(. In most cases,
using the simple formula % �'&)(�,+ " provides the neces-
sary fairness with TCP. The sender is also responsible for
adjusting the sending rate

�
in response to new values of

the loss event rate # reported by the receiver. The sender
obtains a new measure for the loss event rate each time a
feedback packet is received from the receiver. Until the
first loss is reported, the sender doubles its transmission
rate each time it receives feedback just as TCP does dur-
ing slow-start.

The main role of the receiver is to send feedback to the
sender once per round-trip time and to calculate the loss
event rate included in the feedback packets. To obtain the
loss event rate, the receiver maintains a loss interval ar-
ray that contains values for the last eight loss intervals. A
loss interval is defined as the number of packets received
correctly between two loss events. The array is continu-
ally updated as losses are detected. A weighted average
is computed based on the sum of the loss interval values,
and the inverse of the sum is the reported loss event rate,
.

In our implementation of TFRC, we built an unreliable
version of the protocol. The result is a transport proto-
col that is congestion aware and TCP friendly, but does
not have the overhead of detecting and dealing with miss-
ing packets. This design is based on the assumption that
lost packets are more easily recovered from other sources
rather than waiting for a retransmission from the initial
sender. Hence, we eliminate all retransmissions from
TFRC.

0

2

4

6

8

10

12

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
B

yt
es

/s
ec

R
T

T
 (

s)

Time (s)

Send rate (MBytes/sec)
Receive rate (MBytes/sec)

RTT (sec)

Figure 1: TFRC performance for a link with 50 ms delay
between two end hosts in ModelNet.

0

2

4

6

8

10

12

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
B

yt
es

/s
ec

R
T

T
 (

s)

Time (s)

Send rate (MBytes/sec)
Receive rate (MBytes/sec)

RTT (sec)

Figure 2: TFRC performance for a link with 100 ms delay
between two end hosts in ModelNet.

2.1 Evaluation

When evaluating a network protocol such as TFRC, it is
important to test the performance and behavior both in a
standalone setting and in the context of an existing ap-
plication. The following sections address both of these
scenarios.

2.1.1 Standalone TFRC

Since the transmission rate of TFRC is based on the TCP
throughput equation, the performance of TFRC under
varying conditions is determined by the values of the vari-
ables in the equation. In particular, the achieved through-
put of the receiver is greatly affected by the values of # ,
the loss event rate, and " , the round trip time estimate

0

2

4

6

8

10

12

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
M

B
yt

es
/s

ec

R
T

T
 (

s)

Time (s)

Send rate (MBytes/sec)
Receive rate (MBytes/sec)

RTT (sec)

Figure 3: TFRC performance for a link with 100 ms de-
lay between two end hosts in ModelNet. In this scenario
we apply a lower smoothing factor to the RTT measure-
ments.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200
0.1

0.15

0.2

0.25

Lo
ss

 R
at

e
(%

)

R
T

T
 (

s)

Time (s)

Loss Rate p
Round Trip Time R

Figure 4: Loss rate versus Round trip time for the 100 ms
link shown in Figure 2.

from sender to receiver. We will investigate the effects
of both of these variables in this section. We used Mod-
elNet [19], a network emulator, for the majority of the
standalone testing. It provided a stable and controlled en-
vironment to evaluate the behavior of the system.

Figure 1 and Figure 2 show the effects of varying " (link
latency) values. Notice that in Figure 2 the link delay is
twice as high as the link delay of Figure 1, which means
that feedback packets are received at a slower rate than
in Figure 1. As a result, it takes about twice as long to
reach the maximum transmission rate of approximately
10 MBps. Also shown in the graphs is effect of the con-
gestion between the two ModelNet endhosts. As the max-
imum capacity of the link is reached, congestion causes
the round trip time measurements to increase to more

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200
0.1

0.15

0.2

0.25

Lo
ss

 R
at

e
(%

)

R
T

T
 (

s)

Time (s)

Loss Rate p
Round Trip Time R

Figure 5: Loss rate versus Round trip time for the 100 ms
link shown in Figure 3.

twice the link capacity, which eventually causes the send-
ing rate to drop significantly in both graphs. These results
show that the performance of TFRC is sensitive to chang-
ing values of " .

When computing the round trip times within TFRC, we
use a smoothing factor in our measurements to help main-
tain a steadier transmission rate. We do this by using a
weighted average of the RTT measurements. By placing
a higher weight on previous measurements, we dampen
the effect of sudden changes to " , causing the value of
" to be smoother over time. Figure 3 shows the effect of
this factor. In this graph, we placed a higher weight on
new measurements, and ran the same experiment again,
as is shown in Figure 2. The graph shows that by decreas-
ing this smoothing factor to make changes to the value of
" more drastic, the sending and receiving rates also be-
come less smooth. The sending rate reacts to the change
in " quicker than it did in Figure 2. This may be more
desirable for some applications that must react quickly to
congestion.

After evaluating the effect of changing values for round
trip time " , we investigated the relationship between the
loss rate # and " . Since both variables affect the sending
rate, it is important to look at the behavior of both compo-
nents. Also, we want to see if there was any relationship
between the increasing RTT values and the loss rate that
cause the sending rate to suddenly drop. Figures 4 and
5 show the correlation between # and " for the 100 ms
links shown in Figures 2 and 3 respectively. Notice that as
" increases and reaches its maximum, the loss rate # also
rises. The is due to the fact that congestion affects both
the loss rate and latency of a link. As the link becomes
more congested, the round trip time continues to increase

until all packet queues are full. At this point packets are
dropped, causing the loss event rate to increase. When
both the value of " and # increase simultaneously, the
sending rate drops significantly. Both variables have a
significant impact on the sending rate.

When testing TFRC in a standalone setting, we initially
tried running experiments on PlanetLab. However due to
the lack of control, we were unable to single out specific
parameters as we could in ModelNet. Other factors that
were beyond our control, such as high CPU load, network
congestion, and varying link latencies, made it difficult to
perform accurate tests. The results we obtained were in-
conclusive. Fine-tuning performance factors and testing
specific parameters are challenging tasks to complete in
a dynamic, wide-area testbed like PlanetLab.

2.1.2 Using TFRC Within Bullet

When evaluating a new protocol like TFRC, in addition
to performing evaluations as a standalone application, the
protocol should be tested within the context of larger ap-
plications as well. Also, to fully evaluate the TCP friend-
liness when competing with other TCP flows, it must be
run on the wide-area in a realistic Internet application.
In this example, we chose Bullet [13] as the larger Inter-
net application. Bullet is an algorithm for achieving high
bandwidth data dissemination within an overlay mesh.
Participants distribute deliberately disjoint data to their
children, and the children leverage RanSub’s [12] ability
to pass random subsets of remote network state around
the mesh to locate and retrieve missing data. The key in-
sight is that the missing data can be received in parallel
with the data from the parent node. Bullet uses TFRC
as it’s transport protocol, since there is no need for TCP
retransmissions. We assume that it is quicker to get the
missing data from someone else rather than wait for the
sender to detect and correct any losses.

Unlike the standalone application where there is one
sender and receiver, in Bullet you have many senders
and receivers all using the same links. Congestion is ex-
pected, however as long as it is not too severe, TFRC can
recover from it quickly without having a significant im-
pact on the receiver’s throughput. We evaluated TFRC’s
performance on 47 nodes on PlanetLab [16], a wide-area
network testbed. Since we ultimately wanted to show that
Bullet achieved higher bandwidth than traditional stream-
ing over an overlay tree, we tested Bullet over TFRC
against several hand-crafted trees. We also chose the
source in the Bullet experiments to be constrained behind
a high latency link. To do this, we used a source located

0

200

400

600

800

1000

1200

0 50 100 150 200 250

B
an

dw
id

th
 (

K
bp

s)

Time (s)

Bullet
Good Tree
Worst Tree

Figure 6: Achieved bandwidth over time for Bullet and
TFRC streaming over different trees on PlanetLab with a
root in Europe.

in Italy, and the majority of the other nodes were in the
United States.

To perform our experiment, we ran Bullet over a random
overlay tree for 300 seconds while attempting to stream
at a rate of 1.5 Mbps. We waited 50 seconds before start-
ing to stream data to allow nodes to successfully join the
tree. Then we compared this performance to data stream-
ing over multiple hand-crafted trees. Figure 6 shows our
results for two such trees. The tree labeled “good” in
the graph was constructed by placing all nodes with high
bandwidth and low latency high in the tree and close to
the root. We used pathload [10] to measure the available
bandwidth between the root and all other nodes to aid in
this process. In this case, we are able to achieve a band-
width of approximately 300 Kbps. The “worst” tree was
created by setting the root’s children to be the three nodes
with the worst bandwidth characteristics from the root as
measured by pathload. All subsequent levels in the tree
were set in this fashion.

Performing this wide-area evaluation on PlanetLab was
much more difficult than testing TFRC in a standalone
environment using ModelNet. Results were inconsistent,
and discrepancies among the nodes, such as clock skew,
caused many problems in our analysis. Node failures
were common, and widely varying network conditions
made it hard to regenerate results for verification. This
experience has led to the next part of our research which
addresses some of the challenges associated with work-
ing on wide-area testbeds. In the next section, we will
discuss some more of these problems in detail.

3 Challenges of Wide-Area Testbeds

Testing new protocols on wide-area testbeds introduces
many more potential hazards and uncertainties than in
other testing environments. Local-area testbeds, network
emulators, and network simulators offer developers the
ability to test their systems and protocols in controlled
and manageable environments. On wide-area testbeds,
many of these safety features are no longer present. Fur-
ther, when running code across a large number of ma-
chines scattered around the world, several new challenges
arise.

We now present some of the major challenges we had to
address during our experimentation on PlanetLab. Plan-
etLab is a global network testbed for developing, deploy-
ing, and evaluating new protocols.

� There are no guarantees of reliability for data that is
stored on remote machines on the wide-area. While
some machines may employ some sort of daily snap-
shot, most do not. Storing anything irreplaceable on
remote machines is a risk.

� Typically there is no global file system among ma-
chines on wide-area testbeds. Users often have to
invent ways to efficiently keep their personal files
up to date on all remote machines.

� Due to frequent and expected node outages, the test-
ing environment is unstable. Further, since there are
typically many users logged into each node on the
testbed, resource availability may change drastically
within short time intervals.

� While several proposals for distributed resource
management on a wide-area testbed such as Plan-
etLab have been presented (see SHARP [8]) none
are in place as of yet. Some initial per slice resource
limits have been added to stop a small subset of the
users from consuming large percentages of the re-
sources. (A “slice” in this sense refers to a partition
or share of global resources [8].)

� Wide-area testbeds are often heterogeneous testing
environments. Every machine may be configured
differently, and the hardware varies drastically from
node to node. Each machine provides users with a
different set of resources.

� Drastic clock skews are a common problem among
PlanetLab nodes. Although there is a simple solu-
tion to this particular problem, it is often a low pri-
ority among system administrators.

� Since each machine is administered by a system ad-
ministrator at a remote site, there is no consistency
among nodes. Not all system administrators are as
diligent as others about maintaining the nodes on the
wide-area testbed. When a node goes down or needs
maintenance, there is no guarantee that it will be re-
paired quickly.

In addition to these problems, on PlanetLab there is con-
tention among the users for node and network resources.
These resources include the CPU, bandwidth, disk space,
physical memory, as well as many others. Since there
is no easy way to determine what resources are avail-
able on each machine, some nodes are often extremely
overloaded while others have resources to spare. Due
to the constantly changing nature of this environment, it
would be helpful to users if there was an efficient way to
discover the available resources on all PlanetLab nodes.
This would enable users to find a list of machines that
meet the criteria they are looking for in an non-obtrusive
manner. We address this task of building a resource dis-
covery tool for PlanetLab in the next section.

4 Resource Monitoring Services on
PlanetLab

The current techniques that many users employ while
testing their applications and protocols on PlanetLab in-
volve a variety of ad hoc methods. Researchers typically
hand-pick nodes and links with characteristics that seem
to fit their needs [4]. To further complicate the problem,
as the number of users on PlanetLab continues to grow,
so does the contention for resources. This makes find-
ing a set of “good” machines increasingly more difficult.
While testing Bullet (see Section 2.1.2), we needed a list
of machines such that no more than 1 machine was lo-
cated at each site, with 10 machines being located in Eu-
rope, and the others in North America. Maintaining this
list was the most difficult aspect of testing. Machines
would periodically go down, which meant we had to gen-
erate a new list and rerun all experiments. In other cases
the load on a certain machine was so high that the pro-
gram would barely run, again causing the list to be re-
constructed.

By leveraging some of the monitoring services available
on PlanetLab nodes, the problem of finding available re-
sources is somewhat simplified. Here is a list of the mon-
itoring data sets available on PlanetLab [2]:

� All-pairs-ping: The minimum, maximum, and av-
erage ping times measured between all pairs of Plan-

etLab nodes get stored in a text file that is updated
every 30 minutes. Failed attempts also get noted in
the file. (For more information, see
http://www.pdos.lcs.mit.edu/˜strib/pl_app .)

� Ganglia sensors: Ganglia collects node resource
statistics on most PlanetLab nodes every 15 seconds.
The data is available as a list of comma separated
values on port 2841 at each node.

� PLNetflow: This service collects network statistics
data every 5 minutes. It records the number of pack-
ets, number of bytes sent, network protocol used, IP
addresses, and port for every slice on every Planet-
Lab node.

� Scout: Scout measures the number of bytes sent and
received for each slice on every node. The informa-
tion is updated every 5 minutes.

� SliceStat: This service measures the CPU, physi-
cal memory, and network bandwidth usage for each
slice on each node. Data is collected every 5 minutes
and stored locally on each node.

While all of these services provide useful information
that is publicly available to researchers on PlanetLab, few
users actually take the time to parse the information these
monitors provide. This may be due to the fact that ac-
cessing the data on a local node does not provide any an-
swers in terms of resource discovery. A user must know
the measurements at all nodes at any given time to make
a truly informed decision about resources. Even in this
case, the decision is an estimate at best, since PlanetLab
is a continuously changing environment. However, au-
tomated resource discovery using the monitoring data on
PlanetLab to make a decision about available resources
across all nodes would be more efficient and accurate
than the common method of hand constructing node lists.

5 Our Solution to Resource Discovery

In this section, we describe the initial design of our re-
source discovery tool. Using the data gathered from the
Ganglia monitoring service running on each node, we are
able to generate a master list of machines that satisfy a
user defined set of criteria for specific resources. We
introduce an XML query language that allows users to
specify their node resource requirements in an intuitive
manner. In addition to resource discovery based on per
node resource usage, we allow users to go one step be-
yond basic resource discovery and specify smaller groups
of nodes that meet specific all-pairs latency requirements.
The all-pairs-ping data service provides the needed data

MIT

Intel

Duke

UW

UCLA

Italy

MySQL request.xml

ping times

Ganglia

measurements (2) Submit request for

resources

PlanetLab duke3@localhost

UCLA UW Italy (3) Find machines

(4) Copy files and

run executable

(1) Gather data

data.xml

Figure 7: This diagram depicts how our resource discov-
ery tool works. In step (1), latency measurements (ping
data) and Ganglia resource consumption measurements
are collected from all PlanetLab nodes and stored locally.
Next, a PlanetLab user requests a set of machines with a
specific set of resources (2). Upon receiving the request,
our resource discovery tool finds the machines that meet
the required criteria (3). In this case, the lighter colored
nodes had the needed resources. Lastly (4), the necessary
files are copied out to the desired nodes, and the executa-
bles are run.

to return results to these types of latency queries. Lastly,
we enable users to request a minimum cross-group la-
tency among their smaller groups of nodes. Note that
while we focus on latency in our study, the techniques we
present can be applied to any pairwise network metric.

For an example of how this process works, consider a user
who is testing a new replicated service that has significant
levels of load on the west and east coast of the United
States. There are a set of replicated nodes on each coast,
and they all must be able to communicate within the clus-
ter with a low level of latency. At the same time, there is
a requirement that synchronizing the replicas must occur
within a certain time limit. To support this feature, each
cluster periodically elects a leader who is responsible for
transmitting data across the country with a maximum la-
tency of 100 ms.

In this example, assume the user wants a list of nodes
such that no more than 1 machine resides at each Plan-
etLab site. In addition, the user wants nodes who have
at least 20% of their CPU unutilized, a load average of
no more than “4.0” over the past 15 minutes, and a CPU
speed of at least 1 GHz. For the west and east coast clus-
ters, they want 2 groups of machines, such that the Group
A (east coast nodes) has an all-pairs latency of no more

<?xml version="1.0" encoding="UTF-8"?>
<root date="Mon Dec 1 17:52:24 EST 2003">
<node>

<site>Carnegie Mellon University</site>
<ip>128.2.198.196</ip>
<hostname>PLANETLAB-2.CS.CMU.EDU</hostname>
<boottime>1063759892</boottime>
<bytes_in>82770.42</bytes_in>
<bytes_out>445.61</bytes_out>
<cpu_aidle>14.2</cpu_aidle>
<cpu_idle>1.9</cpu_idle>
<cpu_nice>0.7</cpu_nice>
<cpu_num>1</cpu_num>
<cpu_speed>1263</cpu_speed>
<cpu_system>37.4</cpu_system>
<cpu_user>61.4</cpu_user>
<disk_free>11.129</disk_free>
<disk_total>67.968</disk_total>
<gexec>OFF</gexec>
<load_fifteen>10.08</load_fifteen>
<load_five>12.72</load_five>
<load_one>12.43</load_one>
<machine_type>x86</machine_type>
<mem_buffers>80276</mem_buffers>
<mem_cached>234568</mem_cached>
<mem_free>6980</mem_free>
<mem_shared>0</mem_shared>
<mem_total>905012</mem_total>
<mtu>1500</mtu>
<os_name>Linux</os_name>
<os_release>2.4.19-6_planetlab</os_release>
<part_max_used>100.0</part_max_used>
<pkts_in>106232272.00</pkts_in>
<pkts_out>120.26</pkts_out>
<proc_run>10</proc_run>
<proc_total>792</proc_total>
<swap_free>1152848</swap_free>
<swap_total>2040244</swap_total>
<sys_clock>1063760006</sys_clock>

</node>

Figure 8: data.xml: Sample XML file describing the
current Ganglia measurements on a PlanetLab node at
CMU. The XML tags shown are identical to the metrics
that Ganglia returns. On PlanetLab, each node returns
a comma separated list of the measurements for each of
these metrics.

than 50 ms, Group B (west coast nodes) has an all-pairs
latency of no more than 70 ms, and at least one link be-
tween Groups A and B has a latency less than 100 ms.

The following sections describe the details of how this
request would be satisfied. Figure 7 illustrates the entire
process.

5.1 Gather Measurement Data

The first step is to gather all of the needed measurement
data. This includes the Ganglia sensor measurements and
the all-pairs-ping data. To collect the Ganglia sensor data,
each node runs “curl http://127.0.0.1:2841/ganglia” and
stores the output in a text file. We then collect all of these
output files back to a local disk, combine the data, and
parse it using JDOM (a Java representation of an XML

Figure 9: HTML document describing current Ganglia
data for each PlanetLab node. This page is updated on
an hourly basis. It is shown here to give an idea of
what the page looks like. To read the actual values, see
http://www.cs.duke.edu/

�

albrecht/sensor.html.

document) to create an XML document that describes
each node’s resource usage. Figure 8 illustrates a piece of
a sample XML document that is created during this step.
As an added convenience, we use XSLT, a language for
translating XML to HTML, to create an HTML page that
displays the current resource usage for each node. This
page is updated and recreated hourly. A small screen shot
of this page is shown in Figure 9.

The next step is to download the all-pairs-ping data and
store it locally for future querying. This text file is re-
trieved every two hours. The data in the file is parsed
and used to populate a table in a MySQL database using
JDBC (Java Database Connectivity). Erroneous entries in
the text file are ignored. The process of storing the ping
data in the MySQL table and generating the XML doc-
ument containing the Ganglia measurements is shown in
step (1) in Figure 7.

5.2 Query Language

Once the data is gathered, we have the information
needed to satisfy user requests for resources. In our
tool, users describe their desired environment using an
XML document. This is shown in step (2) of Figure 7.
When defining the query language for requests, we pro-
pose a language that is expandable and easy to under-
stand. It is very similar to the XML generated by the
Ganglia data in the previous step. Figure 10 shows a
sample request for the aforementioned example. We use
JDOM again to parse the request and execute the query
in the data file. Everything within the <request> tag

<?xml version="1.0" encoding="UTF-8"?>
<root>

<request>
<numhosts>1</numhosts>
<cpu_idle>20.0</cpu_idle>
<cpu_speed>1000</cpu_speed>
<load_fifteen>4.0</load_fifteen>

</request>
<group>
<name>GroupA</name>
<num_machines>4</num_machines>
<latency>50</latency>

</group>
<group>
<name>GroupB</name>
<num_machines>5</num_machines>
<latency>70</latency>

</group>
<constraint>

<group_names>GroupA GroupB</group_names>
<latency>100</latency>

</constraint>
</root>

Figure 10: request.xml: Sample XML file describing a
user’s request for resources.

defines Ganglia metric requirements. In this particular
case, <numhosts> refers to the number of machines lo-
cated at each PlanetLab site. <cpu idle> represents
the percentage of unutilized CPU, which is 20 in this
case. <cpu speed> describes the speed of the proces-
sor, and <load fifteen> is the average load experi-
enced during the past 15 minutes. Notice how the tags
and metrics in this request map directly back into the tags
and data stored in data.xml in Figure 8.

The latter part of the request describes the groups needed
for this experiment. The first <group> definition creates
a group called “GroupA” with 4 machines (specified by
<num machines>) and a maximum latency of 50 ms.
The second <group> creates a group called “GroupB”
with 5 machines and a maximum latency of 70 ms. The
final part of the request defines the cross-group <con-
straint>. In this case, GroupA and GroupB are the
constrained groups, and they have a cross-group latency
of 100 ms.

The request is not limited to the attributes, metrics, or
groups shown in this example. Any of the Ganglia met-
rics recorded by the nodes and shown in data.xml can be
used in a request for resources. The definition of groups
and constraints is flexible to allow a variety of user spe-
cific scenarios to be created. Further, should additional
services, measurements, or cross-group specifications be
added in the future, the structure and simplicity of the
XML used in our query language make it easy to support
new features.

5.3 Master Node List and Group Creation

At this point in the process, we have the required data to
fulfill the request, and the user has specified the exact re-
sources needed. The first task is to generate the master
node list, which consists of all nodes that have the re-
quired resources ignoring the group creation. To create
this list, we start with a list of all PlanetLab nodes, and
then eliminate nodes who do not meet the criteria speci-
fied. To determine which nodes meet these requirements,
we can query the XML that was generated from the Gan-
glia data. At the conclusion of this process, we are left
with a master node list that contains all nodes eligible for
the group creation process.

Creating the groups of a specific size such that all links
have a latency less than the stated maximum is an NP
Hard problem. In fact, it is nothing more than an instance
of the classic k-clique problem which asks whether or not
a clique, or group, of a given size exists in a graph. More
formally, the problem is defined as follows:

Given an undirected graph
� ���������
	

, a clique is de-
fined as a subset

����
��
of vertices that are fully con-

nected such that each pair of vertices in
�
�

are connected
by an edge in

�
. In other words, a clique is a complete

subgraph of
�

. The size of the clique is the number of
vertices it contains. The k-clique problem is the deci-
sion problem of determining if a clique of size � exists
in the graph. In our case, the topology of PlanetLab is
our graph, and we are looking for a subset of nodes (or
vertices) of size � such that the pairwise latency between
all � nodes is less than some threshold [18].

Assume we are looking for two groups of sizes � and� with the desired all-pairs latency property. Let � be
the size of our master node list. In our example in Fig-
ure 10, � is 4 and � is 5. A naive algorithm for solv-
ing such a problem would be to enumerate all possible
groups of size � , and all possible groups of size � , and
and then systematically check the all-pairs latency in each
group remembering that the two groups must be disjoint
in the end. This algorithm is exponential. To add to the
complexity of this already complicated problem, we have
the extra constraint that the resulting groups must meet a
cross-group latency requirement. Enumerating all possi-
ble solutions would be a very tedious and long running
task.

Rather than check every possible combination, we try to
approximate a solution to this problem. Although this
approach does not guarantee that a solution will be found
if it exists, it does find a solution in most cases, and it’s
running time is bounded by the size of the master list.

while(!done and counter<N) {
foreach group {
//1: Find group of specified size
newGroup=Checklatency(master_list, 0,

newVec, size, latency);
if(newGroup.size()=size)
//2a: Group was found, so remove elements

remove newGroup elements from master_list;
groupList.add(newGroup);

else
//2b: No group was found

groupList.removeAllGroups();
break;

}

if(groupList.size()!=0)
//3: Check for link between groups
done=CheckCrossGroupLatency(groupList);

if(!done)
//4: No link found. Shuffle list and retry
restore_master_list();
shuffle_master_list();
groupList.removeAllGroups();

counter++;
}

//Recursive algorithm for finding groups
nodeList CheckLatency(listNodes, count,

newVec, max, latency) {
oldList=listNodes; //Make copy of list
first=oldList.pop(); //Get first element

//Find links with desired latency in MySQl table
nodes=execute(SELECT edges connected

to first with ping < latency);
newList.add(nodes);

if(newList.size() < max-count-1) {
//Not enough nodes to continue; restart
if(oldList.size()==0)

return newVec;
else

newVec.removeAllElements();
return CheckLatency(oldList, count,

newVec, max, latency);
} else {
newVec.add(first); //Add element to final list
count++;
if(count==max) //We have found enough nodes

return newVec;
else //Keep looking for more nodes

return CheckLatency(newList, count,
newVec, max, latency);

}
}

Figure 11: Pseudo code for our approximation to the full
exponential search for groups that satisfy the given con-
straints.

The pseudo code for our algorithm is shown in Figure 11.
We start by first finding a group of size � , and proceed
to remove all nodes in the group from the master list of
nodes. This step is shown in Comments 1 and 2a in Fig-
ure 11. Then we run the same procedure again, this time
in search of a group of size � . If two groups are found,
they are guaranteed to be two disjoint groups of size �
and � . Otherwise (Comment 2b), we remove all groups,
shuffle the master list, and try again.

Assuming two groups are found, next we check to see if
any link exists between the two groups that is less than the
maximum latency requirement, which is 100 ms in our
case (Comment 3). If a link does exist, we have found
a solution. If not, we add all nodes back to the master
list, shuffle the list, increment our counter, and run the
algorithm again. This is shown in Comment 4 of Fig-
ure 11. Due to the recursive nature of the group finding
algorithm, shuffling the list increases the probability of
finding two different groups than in the previous run. We
continue this process until a solution is found, or until �
(size of master node list) iterations have run unsuccess-
fully.

In practice, we find that this method works relatively well
in a short amount of time. Most queries finish in a matter
of minutes, and successful queries usually finish in under
10 seconds. Figure 12 shows an example of the output
returned in this process.

Once the master node and group lists are created, the user
is free to copy their code onto the PlanetLab nodes and
run their experiment. We have a basic infrastructure set
up for this purpose that uses scp to simultaneously copy
files to all PlanetLab nodes designated in the master node
list, and ssh to run the executable. At this point these
steps are not integrated into the resource discovery pro-
cess, although this may be added in the future.

6 Evaluation

To evaluate our tool, we analyze the running time of the
two main components: the Ganglia data parsing and mas-
ter list creation phase, and the group creation process.
Also, since our tool measures resource consumption on
PlanetLab nodes, we show an example of how we can
evaluate the status of all nodes simultaneously for a spec-
ified resource. In this case, we look at CPU usage, which
seems to be one of the most valuable resources on Plan-
etLab.

6.1 Ganglia Data Parsing Analysis

In Figure 13, we look at the time it takes our tool to find
a master list of nodes when the size of PlanetLab is fixed
at 139 machines. This allows us to analyze the overhead
of adding a node to the master list. The majority of the
data points lie between 650 and 700 ms, with some noise
in the data causing minor oscillations in various spots.
The slope of the line is slightly increasing, which means
that as the number of nodes in the master list increases
so does the completion time. This implies that there is a

> java FindHosts request.xml data.xml
Finding groups......done.

Master node list

128.2.198.196
150.135.65.3
129.237.123.250
160.36.57.174
128.8.126.12
12.46.129.23
216.165.109.81
171.64.64.217
128.95.219.194
158.130.6.253
128.220.231.2
128.84.154.71
142.103.2.2
141.213.4.202
138.96.250.222
131.243.254.35
206.240.24.21
69.28.151.3
128.232.103.201
198.133.224.145
204.123.28.52
128.42.6.144

Total nodes: 22

Groups

Name: GroupA
Latency 50.0 ms:
128.2.198.196
128.84.154.71
158.130.6.253
216.165.109.81

Name: GroupB
Latency 70.0 ms:
150.135.65.3
142.103.2.2
141.213.4.202
129.237.123.250
128.95.219.194

Link that meets latency requirement
of 100.0 ms:

Source: 150.135.65.3
Destination: 128.2.198.196
Latency: 77.005
Reverse Latency: 88.686

Figure 12: Sample output after running the resource dis-
covery tool for the request specified in Figure 10.

small overhead associated with adding nodes to the mas-
ter list. However, since we must parse all of the data to
check the resources of every node in PlanetLab for each
request, the overhead is relatively small. We are essen-
tially measuring the time it takes to add the hostnames to
a list that is returned at the end of the procedure.

Figure 14 investigates the scalability of our resource dis-
covery tool as more machines are added to PlanetLab. For
this experiment, we maintained a constant master list size
of 41 machines, and varied the total number of machines
in PlanetLab. With a few exceptions, the slope of the line
is approximately constant as we increase the number of

400

450

500

550

600

650

700

750

800

850

900

0 20 40 60 80 100 120

T
im

e
(m

s)

Number of Nodes in Master List

Master list created

Figure 13: Time to locate a master node list versus the
size of the completed master list. In this case the number
of nodes in PlanetLab was fixed at 139 machines.

machines from 50 to 500. With 500 machines in Planet-
Lab, it takes 1 second to find a master list of nodes. We
believe that it will continue to scale linearly in this fash-
ion as the size of PlanetLab increases.

Another aspect of scalability that we must address is the
bandwidth required to download the measurement data.
To retrieve the Ganglia sensor data, we retrieve output
files from all PlanetLab nodes once each hour. These
files average 750 bytes in size. Currently, the Ganglia
sensors run on 148 nodes in PlanetLab. This means that
our file transfer requires 11 Kbytes of data to be sent over
the network. Averaged over the hour between transfers,
this works out to approximately 768 bps of network band-
width. As we increase the size of PlanetLab, the Ganglia
output file size will increase linearly. Each node will add
approximately 750 bytes to the total size of the down-
load. The current bandwidth required to retrieve the ping
output is comparable to that of the Ganglia sensors. The
most recent file size is 1.3 Mbytes, and this includes the
data for about 250 nodes. This data is downloaded once
every two hours, since the latency measurements tend to
be more constant over time than the Ganglia resource
statistics. Unlike the Ganglia sensor data, the size of the
ping data file will increase quadratically with respect to
the number of nodes on PlanetLab.

6.2 Group Creation Analysis

Figure 15 measures the time it takes our resource dis-
covery tool to locate groups that meet the desired con-
straints. In this example, we varied the number of groups
and the number of constraints in each request. Within
the requests, we also varied the size of the groups and

300

400

500

600

700

800

900

1000

1100

40 80 120 160 200 240 280 320 360 400 440 480

T
im

e
(m

s)

Number of Nodes in PlanetLab

Master list created

Figure 14: Time to find a master node list versus the to-
tal number of nodes in PlanetLab. Number of nodes in
master list was fixed at 41 machines.

the requested latencies. For the line with 2 groups, we
used the request shown in Figure 10, and varied the
<cpu idle> value to create master lists of different
sizes. The line with 3 groups and two 2-node constraints
requested 3 groups with 50 ms, 60 ms, and 70 ms la-
tencies, and group sizes 3, 4, and 5 respectively. In this
scenario, we requested that GroupA and GroupB have a
cross group latency of 80 ms, and GroupB and GroupC
have a cross group latency of 100 ms. For the third case,
we requested the same three groups as in the previous
case, however this time we requested a cross group la-
tency among all 3 groups of less than 90 ms. In the final
case, we added a fourth group to our request of size 4 and
latency 80 ms, and asked for a cross group latency among
all 4 groups of less than 150 ms.

The results show that overall, the maximum time to sat-
isfy any of the requests shown is just over 3 seconds for
all master list sizes. Increasing the number of groups
causes the completion time to increase. This is due to
the fact that more groups must be found, and therefore
the algorithm must run for a longer period of time. Con-
straints that involve a greater number of nodes also take
a longer time to satisfy than constraints with less nodes.
The reason for this is because the number of links that
must be found to meet the requirement increases at a rate
greater than linear. For example, for a 3 node constraint,
3 links must be checked. For a 4 node constraint, 6 links
must be checked. (The formula is ��� � ��� � � $ �����
	 ��
� �

�
,

where � is the number of nodes in the constraint.) Thus it
is easier to check two 2-node constraints with only 2 to-
tal links than to check one 3-node constraint with 3 links.
The time to complete the requests rises slightly as the size
of the master list increases in all four scenarios.

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

35 40 45 50 55 60

T
im

e
(s

)

Number of Nodes in Master List

2 groups (One 2-node constraint)
3 groups (Two 2-node constraints)
3 groups (One 3-node constraint)
4 groups (One 4-node constraint)

Figure 15: Time to find groups satisfying specific re-
quests with varying numbers of groups and constraints
versus the total number of nodes in the master list.

In order to avoid a full exponential search during the
group creation process, we chose to implement an ap-
proximation that stops our algorithm after a specific num-
ber of iterations. Rather than enumerate all possible com-
binations of groups and nodes, our tool stops searching
for groups after a maximum of � recursive attempts,
where � is the number of nodes in the master list. To an-
alyze the effect of our approximation, we look at the time
it takes our tool to determine that no groups satisfying the
given query can be found as a function of the master list
size. We limit the experiments to cases where there is
only 1 machine per site, since latency measurements be-
tween machines at the same site are approximately equal.
The results to this experiment are shown in Figure 16.
The curve is still exponentially increasing, however the
rate of increase is smaller than a full exponential search
would yield.

6.3 PlanetLab Node Analysis

Our tool gives PlanetLab users the ability to analyze the
consumption of specific resources across all nodes simul-
taneously. In this section we give an example of how this
can be used to evaluate the overall status of PlanetLab
for a specific point in time. In this example, we chose
to look at CPU usage. Figure 17 is a cumulative distri-
bution function that shows the results of our study. In
this graph, when searching for one machine per site, 75%
of the nodes have resources available, while 25% percent
have a CPU usage of 100%. If we look at 2 machines
per site, only 60% of the nodes have a CPU usage of less
than 100%. For 3 machines per site, the percentage drops
even lower to 55% of the machines with less than 100%
CPU usage. These results imply that while it is possible

50

100

150

200

250

0 5 10 15 20 25 30 35 40

T
im

e
(s

)

Number of Nodes in Master List

No groups found

Figure 16: Time to determine that no groups satisfying
a given request can be found versus the total number of
nodes in the master list.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 N

od
es

CPU Usage (%)

Three hosts per site
Two hosts per site
One host per site

Figure 17: CDF of CPU usage for all machines on Plan-
etLab.

to find one node at each site with an available CPU, it is
considerably harder to find two or three machines at each
site that satisfy this constraint. This graph also shows us
that the load across the machines is not equally balanced.
In many cases, one machine at each site is significantly
less loaded than the others. This is another reason why
a tool for resource discovery is needed on PlanetLab. It
provides a way to balance the load among all machines
equally, since users will now be able to find the least
loaded machine rather than randomly choosing one node
per site.

7 Future Work

While the design of the resource discovery tool described
in this paper solves some of the resource contention prob-

0

20

40

60

80

100

0.01 0.1 1 10 100 1000

P
er

ce
nt

ag
e

of
 N

od
es

Transfer Time (s)

100 KB file
1 MB file

10 MB file
100 MB file

Figure 18: CDF of scp transfer time for varying file sizes
across all machines on PlanetLab.

lems, there are many features that could be added to in-
crease its effectiveness. In this section we discuss of few
of the features we hope to add and improve upon in the
future.

While latency measurements provide valuable informa-
tion about link delays between PlanetLab nodes, perhaps
an even more valuable metric is available bandwidth.
Like the latency measurements, querying for pairwise
bandwidth is also an NP Hard problem. However, the
problem that must first be solved in this case is how to
unobtrusively and accurately measure the available band-
width between two nodes. Some solutions have been pro-
posed, such as pathload [10] and Backbeat [17], and these
services will certainly be considered as we continue to
add features to our tool.

Another useful piece of information that would add to the
flexibility of our resource discovery tool is the geographic
coordinates of each node. It goal here is ultimately to sup-
port queries for � nodes in Europe and � nodes in North
America. This would have been particularly useful in the
Bullet experiments described in Section 2.1.2.

Our current solution to the problem of resource discovery
is to download all measurement information to a central
location and perform queries there. This is not a scalable
solution. It would be better if we could decentralize the
data in some way. One possible solution is to combine
resource discovery with a resource management service
such as SHARP [8]. In this case, agents running at each
site could periodically pass resource consumption infor-
mation to their neighbors, so that a particular request for
resources would be forwarded through the network until
a set of machine with the desired metrics are found. An-
other option is to employ the use a of distributed query

engine such as PIER [9].

As we mentioned before, our current techniques for copy-
ing data out to all nodes in the master node list and run-
ning executables is naive. It uses parallel scp connections
to copy data to all nodes simultaneously, and parallel ssh
sessions to run the executables in a similar fashion. A
more elegant and quicker solution would be to use Bullet
to disseminate the data to all nodes on the master node
list. As described in Section 2, Bullet leverages the use
of disjoint data and perpendicular downloads to send and
receive large data files to all members of a group in an
efficient manner. Figure 18 shows a CDF of file trans-
fer times in Planetlab for files of varying sizes. While
small files finish quickly, larger file have a much wider
distribution of completion times. The longest time took
over 30 minutes to complete, with almost half the nodes
timing out after 10 minutes. Bullet will help make the
transfer times across all nodes more equal, while also de-
creasing the total download time by using perpendicular
bandwidth.

When finding groups that meet the specified criteria, we
employ an approximation to the NP Hard k-clique prob-
lem. Other approximations to this problem exist given a
specific network topology. Once we have a better idea
of what the topology of PlanetLab looks like, we can im-
plement more efficient algorithms to find groups that our
current implementation provides.

8 Related Work

Sophia [20] is a network Information Plane that is cur-
rent deployed on PlanetLab. Based on the ideas presented
in [3] which describe an omniscient Knowledge Plan for
networks, Sophia is a distributed system that stores, mon-
itors, and adjusts to changing network conditions. There
are three main components in Sophia. First, there are sen-
sors distributed at each node that monitor node and net-
work statistics. Second, Sophia uses a Prolog-like lan-
guage to evaluate expressions and logic statements about
the system. The third component is a set of actuators that
perform local actions, such as killing processes, on the
nodes. While this system is similar to our resource dis-
covery tool, it only responds to requests about the con-
dition of a specific resource at a given time. It does not
handle user requests about multiple environmental condi-
tions, and it does not support advanced group and cluster
creation.

In [4], Considine, Byers, and Mayer-Patel argue that next
generation wide-area testbeds should possess that same
specifiable and repeatable behavior that is present in emu-

lation and simulation. They go on to describe a constraint
satisfaction method for finding a topology of nodes that
meet a set of pairwise constraints, and note that this prob-
lem is NP Complete. The authors are essentially solv-
ing the same group creation problem that we are, how-
ever they do not address the per node resource consump-
tion problem at all. They focus specifically on how to
solve these types of problems using constraint satisfac-
tion methods and intelligent search techniques on Planet-
Lab. In their example, they do mention that they elimi-
nate all nodes with full file systems and CPU loads over
2.0, but they do not attempt to satisfy any other types of
user specific resource constraints.

Grid technologies addressed the issue of resource discov-
ery a few years ago as part of the Globus Grid toolkit [5].
The service that supports resource discovery in the Grid
is called MDS2, which stands for Monitoring and Dis-
covery Service. It includes an information provider
framework called a Grid Resource Information Service
(GRIS). Current implementations include static and dy-
namic host information, as well as network information.
GRIS parses client requests and dispatches them to the
appropriate information provider, who returns the results
back to the client. This tool provides similar functionality
to Grid users that we provide to PlanetLab users.

In [1], the authors present the design and implementation
of INS, an Intentional Naming System. Using the scheme
they propose, applications that use INS specify what they
are looking for in the network, rather than specifying a
specific location or hostname that describes where to find
the needed resource. They propose a simple language
based on attributes and values. To satisfy requests, INS
request resolvers form an application level overlay net-
work that discovers and monitors new services and re-
sources. This system provides a way to locate services
and resources based on what is being advertised and is
known by the resolvers in the network. Sun’s Jini [11]
provides a similar framework for service discovery. It al-
lows electronic components of all types to communicate
and share their functions. Unlike our tool, it seems both
INS and Jini have been designed more for locating phys-
ical devices in the network, such as a camera or printer,
rather than node resources that are constantly changing.

9 Conclusion

Before a novel protocol can be released to the public, it
must be tested in a realistic Internet-like environment. In
the past, it was hard to find widely distributed machines
that were open to experimental, network research. With
the emergence of wide-area testbeds such as PlanetLab,

researchers now have the capability to expose their sys-
tems to live Internet conditions. However, these wide-
area testbeds do not give users as much control over their
experimental environment as simulation and emulation.
When testing new protocols such as TFRC, there are sev-
eral parameters that must be tuned for optimal perfor-
mance. Without a way to control the testing environment,
researchers resort to hand selecting a group of nodes that
possess the needed resources at runtime. In this paper, we
present a case study of a novel network protocol called
TFRC, and describe the challenges that must be over-
come when testing on wide-area testbeds. By leveraging
the monitoring services available on PlanetLab, we pro-
pose a resource discovery tool and query language as a
solution to the problem. Specifically, this paper makes
the following contributions:

� We present a detailed analysis of TFRC. It is pre-
sented as an example evaluation of a novel network
protocol that highlights the differences between em-
ulators and wide-area testbeds, as well as motivates
our work with resource discovery. We have also re-
leased a public version of TFRC that has been tested
within Bullet and other large overlay systems.

� We outline the challenges involved with running
experiments on wide-area testbeds like PlanetLab.
Users cannot control their testing environments, and
therefore must use resource discovery to locate the
machines with the desired set of specifications be-
fore running any tests.

� We give a description of some of the monitoring ser-
vices available on PlanetLab nodes. These services
measure node and network resource consumption at
regular intervals. The measurements are publicly
available to all PlanetLab users.

� The design and performance of our resource discov-
ery tool is described and evaluated. Resource dis-
covery allows users to find nodes that have desired
characteristics in an efficient manner. By leverag-
ing the data provided in the monitoring services, our
tool satisfies user requests for node resource statis-
tics and network metrics.

� We define an expandable and generic XML query
language that allows users to request specific node
and network characteristics. Our language supports
both per node resource usage characteristics, as well
as pairwise network measurement specifications en-
abling the creation of smaller clusters of nodes. To
support the latter feature, we provide an approxima-
tion to the NP Hard k-clique problem.

� An evaluation of the performance of the various
components in our resource discovery tool is in-
cluded. We also show how our tool can be used to
analyze the status of all nodes on PlanetLab simul-
taneously.

References

[1] William Adjie-Winoto, Elliot Schwartz, Hari Bal-
akrishnan, and Jeremy Lilley. The Design and Im-
plementation of an Intentional Naming System. In
Symposium on Operating Systems Principles, De-
cember 1999.

[2] Brent Chun and Amin Vahdat. Workload and Fail-
ure Characterization on a Large-Scale Federated
Testbed. Technical Report IRB-TR-03-040, Intel
Research, November 2003.

[3] David Clark, Craig Patridge, J. Christopher Ram-
ming, and John Wroclawski. A knowledge plane
for the internet. In Proceedings of ACM SIGCOMM,
August 2003.

[4] Jeffrey Considine, John Byers, and Ketan Mayer-
Patel. A Constraint Satisfication Approach to
Testbed Embedding Services. In Proceedings of
ACM HotNets-II, November 2003.

[5] K. Czajkowski, S. Fitzgerald, I. Foster, and
C. Kesselman. Grid information services for dis-
tributed resource sharing, 2001.

[6] Sally Floyd, Mark Handley, Jitendra Padhye, and
Jorg Widmer. Equation-based congestion control
for unicast applications. In SIGCOMM 2000, pages
43–56, Stockholm, Sweden, August 2000.

[7] Sally Floyd and Eddie Kohler. Internet research
needs better models. In Proceedings of ACM
HotNets-I, October 2002.

[8] Yun Fu, Jeffrey Chase, Brent Chun, Stephen
Schwab, and Amin Vahdat. SHARP: An Architec-
ture for Secure Resource Peering. In Proceedings
of the 19th ACM Symposium on Operating System
Principles, October 2003.

[9] Ryan Huebsch, Joseph M. Hellerstein, Nick Lan-
ham Boon, Thau Loo, Scott Shenker, and Ion Sto-
ica. Querying the internet with pier. In Proceed-
ings of 19th International Conference on Very Large
Databases (VLDB), September 2003.

[10] Manish Jain and Constantinos Dovrolis. End-to-
End Available Bandwidth: Measurement methodol-
ogy, Dynamics, and Relation with TCP Throughput.
In Proceedings of ACM SIGCOMM, August 2002.

[11] Jini. http://java.sun.com/products/jini, 1998.

[12] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht,
Abhijeet Bhirud, and Amin Vahdat. Using Ran-
dom Subsets to Build Scalable Network Services.
In Proceedings of the USENIX Symposium on Inter-
net Technologies and Systems, March 2003.

[13] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht,
and Amin Vahdat. Bullet: High Bandwidth Stream-
ing Using and Overlay Mesh. In Proceedings of the
19th ACM Symposium on Operating System Princi-
ples, October 2003.

[14] The network simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[15] Jitedra Padhye, Victor Firoiu, Don Towsley, and
Jim Krusoe. Modeling TCP Throughput: A Sim-
ple Model and its Empirical Validation. In ACM
SIGCOMM ’98 conference on Applications, tech-
nologies, architectures, and protocols for computer
communication, pages 303–314, Vancouver, CA,
1998.

[16] Larry Peterson, Tom Anderson, David Culler, and
Timothy Roscoe. A Blueprint for Introducing Dis-
ruptive Technology into the Internet. In Proceed-
ings of ACM HotNets-I, October 2002.

[17] Patrick Reynolds and Amin Vahdat. Backbeat: Co-
ordinated Probes for Distributed Systems. In Sub-
mission for NSDI, 2004.

[18] Charles E. Leiserson Thomas H. Cormen, Ronald
Rivest, and Clifford Stein. Introduction to Algo-
rithms, Second Edition, chapter NP-Complete Prob-
lems. McGraw-Hill Book Company, 2001.

[19] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya
Mahadevan, Dejan Kostić, Jeff Chase, and David
Becker. Scalability and Accuracy in a Large-Scale
Network Emulator. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI), December 2002.

[20] Mike Wawrzoniak, Larry Peterson, and Timothy
Roscoe. Sophia: An Information Plane for Net-
worked Systems. In Proceedings of ACM HotNets-
II, November 2003.

