
Using Enterprise JavaBeans in a  
Computer Science Curriculum 

 
Rodney S. Tosten, rtosten@gettysburg.edu 

Jeannie R. Albrecht, s412270@gettysburg.edu 
Christyann Ferraro, s384898@gettysburg.edu 

Gettysburg College 
Gettysburg, PA  17325 

(717) 337-6630 

 
ABSTRACT 
 This paper introduces the principles behind 
Enterprise JavaBeans including examples of both 
session and entity beans.  It also discusses techniques 
for incorporating Enterprise JavaBeans into a 
computer science curriculum specifically within a 
distributed processing course and database course. 
The paper ends with an evaluation and summary of 
Enterprise JavaBeans. 
 
Keywords: deploy, Enterprise JavaBeans, 
transactions, database, Distributed processing 
 
1. INTRODUCTION 

In the early 1990’s, traditional enterprise 
information system providers began shifting 
from two-tier client server application models to 
multi-tier models.  The new models separated 
business logic from system services and user 
interfaces, placing a new middle tier between the 
two.  The development of these middleware 
services, combined with the growing popularity 
of the Internet, has created a demand for simple, 
portable, easy to deploy applications.   

Until recently, the task of creating these 
middle business applications was fairly difficult.  
There were two basic types of services from 
which to choose.  The first service was 
Transaction Processing Monitors.  The purpose 
of a Transaction Processing Monitor was 
essentially to manage and oversee all actions.  
They were often responsible for performing 
complex tasks.  One problem with Transaction 
Processing Monitors was that they were not 
object oriented and had no sense of identity.  
They worked solely with procedural code.  The 
second service was Object Request Brokers.  
The goal of these was to establish the 

communication backbones that were used to 
interact with unique objects [1].  They did have 
a sense of identity, however they left 
concurrency, transactions, and fault tolerance up 
to the developer.  Because programmers had to 
choose one of these two services, programming 
a stable application often became very 
complicated.  Enterprise JavaBeans (EJB) 
combine ideas from both Transaction Processing 
Monitors and Object Request Brokers, offering a 
simple and platform independent solution to 
programmers’ problems. 
 Enterprise based technologies, like EJB, 
will play a large role in the future of computing, 
and therefore also in computer science 
education.  EJB incorporates concepts taught in 
both Database Systems courses and Parallel and 
Distributed Processing courses.  Thus, we 
believe that EJB should be featured in a 
computer science curriculum. 
 
2. WHAT ARE EJB? 

The Enterprise JavaBeans (EJB) 
technology provides an adaptable architecture 
for distributed business objects that can 
automatically manage transactions, object 
distribution, concurrency, security, and 
persistence.  This technology essentially 
combines the fundamental concepts of 
Transaction Processing Monitors and Object 
Request Brokers.  By using EJB, programmers 
can create portable, customizable, platform 
independent applications to control database 
access and operations.   

There are two main categories of EJB: 
session beans and entity beans.   The 
development and functionality of the two are 



very different.  Entity beans are persistent 
objects, while session beans are transient.  
Generally, entity beans model business concepts 
that can be expressed as nouns.  They represent 
the state and behavior of real world objects, and 
are persistent records in a database.  In fact, each 
row in a database can be viewed as an entity 
bean.  Session beans, on the other hand, are 
responsible for executing processes or 
completing tasks.  They model activities that are 
fundamentally transient, and do not represent 
anything in a database.  Session beans are 
frequently used to describe interactions or 
implement tasks for a group of entity beans.   

There are two different types of session 
beans that can be used when creating an 
application.  Stateless session beans are the 
simplest type of bean.  They have no knowledge 
of past method calls or requests, and they do not 
maintain a conversational state with the client.  
Due to their non-persistence and non-dedicated 
properties, few server resources are required, 
making them very efficient.  Basically any 
activity that can be performed in one method 
call is a good candidate to be a stateless session 
bean.  The other type of session bean is a stateful 
session bean.  These beans offer an alternative 
somewhere between entity beans and stateless 
session beans.  They still do not represent any 
information in a database, however they are 
dedicated to one client for the life of the bean 
instance.  They maintain a conversational state 
with their client, causing them to require more 
server resources.   

Like session beans, entity beans are also 
divided into two subcategories.  The first and 
less complex type of entity bean is the container-
managed bean.  With container-managed beans, 
the container automatically regulates the 
coordination of data represented by a bean 
instance with the database.  Container-managed 
beans are very flexible and reusable, however 
they require more sophisticated mapping tools to 
access the database.  This generally means that 
extra steps are required when setting up the bean 
within the deployment tool.  The other type of 
entity bean is the bean-managed bean.  These 
beans force the developer to handle the 
inserting, updating, and deleting of data 
explicitly.  Programmers must supply code for 

database manipulation, so there is no need for 
the sophisticated mapping tools.   
 
3. DEVELOPING EJB 

The basic structure of an Enterprise 
JavaBean is the same regardless of the type of 
bean being programmed.  Two interfaces and 
one class are needed to define EJB.  All three of 
these applications reside within an EJB 
container.  Containers are abstract entities that 
are responsible for managing beans and 
providing an environment in which enterprise 
beans can run [2].  The interfaces present the 
methods of the bean to clients outside of the 
container, while the class contains the Java code 
for these methods. 

The first interface is the remote 
interface.  The bean’s business methods that are 
present to the outside world are listed here.  The 
remote interface always extends 
javax.ejb.EJBObject.  The exact same methods 
that are listed in the remote interface will be 
found in the bean class.  For example, if there is 
a method getName( ) in the remote interface, an 
identical method getName( ) must be in the bean 
class as well. 

The second interface needed is the home 
interface.  The bean’s life cycle methods, such 
as it’s methods for creating, removing, and 
finding beans, are defined in the home interface.  
It always extends javax.ejb.EJBHome .  The 
methods found in the home interface correspond 
to those in the bean class, however they do not 
have exactly the same name.  For example, the 
home interface always defines a create( ) 
method.  Instead of a create( ) method in the 
bean class, there is a method called ejbCreate( ) .  
They are not identical, but the correlation is 
obvious. 

The class file that must be created 
defines the algorithms for the business 
operations.  This class implements either 
javax.ejb.SessionBean or javax.ejb.EntityBean 
depending on the type of bean being built.  The 
bean class contains the coding for all of the 
methods of the bean.  It contains business 
methods that match those found in the remote 
interface, and life cycle methods that correspond 
to those found in the home interface.   



Once all three of these programs are 
written and compiled with Java’s javac 
compiler, the bean can be deployed.  When a 
bean is deployed it is added to an EJB container 
so that it can be accessed as a distributed 
component [1].  There are several different 
applications available for the deployment of 
EJB.  Starting with the release of Java 2 
Enterprise Edition (J2EE), an EJB deployment 
tool (Figure 1) is part of the basic download.  A 
J2EE server and Cloudscape database server are 
also included, so it is possible to develop EJB 
without any other software packages.  Each 
deployment tool is slightly different, and in 
some cases it is necessary to create a primary 
key class for entity beans.  Some packages may 
require the developer to create a deployment 
descriptor before the bean can successfully be 
deployed.  With J2EE’s tool, however, neither of 
these is needed.  They are created during 
deployment. 
 

 
Figure 1. – J2EE Deployment Tool 

 
In addition to the interfaces and the 

class, a client program is needed to reference the 
EJB.  The client is separate from the bean, and 
would not be included in the EJB container.  
When a client wants to access a bean, it first 
locates the bean’s home interface via the Java 
Naming and Directory Interface (JNDI).  The 
home interface creates an instance of a bean, and 
returns the instance to the client.  The client is 

then free to access the business methods of the 
bean via the remote interface (Figure 2).  When 
the client is finished and wants to delete the 
bean, it notifies the home interface again, and 
the bean instance is removed. 

 

 
Figure 2. – EJB Overview 

 
4. EJB IN THE CLASSROOM 

EJB can be integrated into two courses 
in a computer science curriculum: Database 
Systems and Parallel and Distributed Processing.  
Both of these courses have the same 
prerequisite, namely Data Structures.  
Knowledge of both database systems and 
distributed processing are needed to fully 
understand the theory behind EJB, so there will 
be some overlap between the two classes. 

At Gettysburg College, Parallel and 
Distributed Processing covers both parallel and 
distributed systems and architectures. In the 
beginning of the course, students work on SIMD 
and numerical parallel processing.  The SIMD 
based programming language Parallaxis is used 
to practice developing programs like sorting 
algorithms.  This helps to familiarize students 
with the theory of parallel processing.  The 
second part of the course focuses on MIMD and 
distributed processing.  Java Threads and RMI 
(Remote Method Invocation) are used to 
introduce students to these topics.    

This second section is also the part of 
the course where EJB are discussed.  EJB are a 
direct extension and application of JavaRMI.  
RMI is used in the development and deployment 
of EJB.  The stubs and skeletons needed are 



actually generated by the rmic compiler, 
although the deployment tool runs the command 
automatically during the deployment of the 
bean.  EJB communicate using RMI.  Hence all 
beans and interfaces import either java.rmi.* or 
javax.rmi.*, just as all other RMI applications 
do.   EJB allow students to see some of the real 
world applications of RMI, and it gives them 
another chance to work with concepts that were 
covered throughout the course. 

EJB fits naturally into a database course.  
An instructor can discuss both data modeling 
and data implementation techniques within the 
context of EJB.  EJB allows for the abstraction 
of data by wrapping the data representing an 
object into one bean.  Students can study and 
analyze an object by the operations and major 
data groups of the object.   

For example, students can model a 
person object by using the person’s name and 
address.  The students discuss the public 
methods used in the entity and session beans 
associated with a person.  When it is time to 
implement the beans and connect their 
abstraction to a database, then the discussion can 
turn to specifics associated with entity-
relationship diagrams.  Student must determine 
and store the actual facts and data comprising a 
name and address.  Most people have several 
names that makeup their full name.  Likewise, 
addresses are normally comprised of several 
pieces of data: street, city, state, and country.  At 
this level, an instructor can discuss the SQL 
commands necessary to implement the data 
abstraction layer. 
 
5. EXAMPLE BEANS 

This section discusses three sample 
beans that illustrate the elementary concepts of 
EJB. 

 
5.1 Stateless Session Bean 

The first class example demonstrates a 
simple stateless session bean called DemoBean 
that does nothing more than return a String 
(“Hello World!  We're back in business!") back 
to the client.  The example is presented first with 
a demonstration followed by an explanation of 
the two interfaces, ending with a description of 
the bean class and a client.   

The code below defines the remote 
interface, Demo.java.  The important features to 
point out are that it extends EJBObject, and 
defines the bean’s only business method, 
demoSelect( ). 
 
//Remote interface 
package demo; 
import java.rmi.*; 
import javax.ejb.*; 
 
public interface Demo extends  EJBObject { 
   public String demoSelect() throws    
     RemoteException; } 
 

The following code defines the home 
interface of the bean, DemoHome.java.  Note 
that it extends EJBHome and defines the bean’s 
only life cycle method, the create( ) method.   

 
//Home interface 
package demo; 
import java.rmi.*; 
import javax.ejb.*; 
import java.util.*; 
 
public interface DemoHome extends EJBHome { 
   public Demo create() throws    
     RemoteException, CreateException; } 
 

The code below describes the bean 
class, DemoBean.java.  This is where the 
algorithms and coding for the bean’s methods 
are located.  The first item to point out is that it 
implements SessionBean.  Also notice that by 
implementing SessionBean all of the methods 
except for demoSelect( ) are required as part of 
the interface.  These methods are the life cycle 
methods that correspond to the ones found in the 
home interface.  All beans contain them.  The 
method demoSelect( ) defines the only business 
method of DemoBean.  It simply returns a String 
back to the client, or throws a RemoteException.  

 
//Bean class 
package demo;                            
import javax.ejb.*; 
import java.rmi.*; 
import java.util.*; 
import java.io.*; 
                              
public class DemoBean implements SessionBean {  
 
 public void ejbActivate() { 
    System.out.println("ejbActivate   
      called"); } 
                              
 public void ejbRemove() { 
    System.out.println("ejbRemove  
      called"); } 
                              



 public void ejbPassivate() {           
    System.out.println("ejbPassivate  
      called"); } 
                              
 public void    
   setSessionContext(SessionContext ctx){ 
    System.out.println("SessionContext  
      set"); } 
 
 public void ejbCreate () { 
    System.out.println("ejbCreate  
      called"); } 
        
 public String demoSelect() throws  
   RemoteException  { 
    return("Hello World!  We're back in   
      business!"); } } 
 

The final component of this 
demonstration is an analysis of the client, 
DemoClient.java.   The client starts out by 
locating the object using the JNDI name 
specified in the deployment tool.  In this case, 
the name is “dhome.”  Once the object is found 
and returned to the client, the object is cast to the 
type DemoHome.  The create( ) method is 
called, and a bean object is created and returned 
to the client.  At this point the client is free to 
use the business methods of the bean.  In this 
example, demoSelect( ) is called and a String is 
returned to the client.  The results are displayed 
and then the client ends. 

 
// Client 
package demo; 
import javax.ejb.*; 
import javax.naming.*; 
import javax.rmi.*; 
import java.io.*; 
import java.util.*; 
 
public class DemoClient { 
 static DemoHome dhome1; 
 static Demo demo1; 
   
 public static void main(String[] args) { 
  System.out.println("\nBegin Stateless    
    Session DemoClient...\n"); 
 
  try { 
    Properties p = System.getProperties();     
    Context ctx = new InitialContext(p); 
       
    System.out.println("Looking for DemoHome  
      class..."); 
    Object objref = ctx.lookup("dhome");   
    dhome1 = (DemoHome)  
      PortableRemoteObject.narrow  
      objref,DemoHome.class); 
 
    System.out.println("Creating a  
      DemoBean\n"); 
    demo1 = dhome1.create(); 
       
    System.out.println("Bean created"); 

    System.out.println("The result is:  
" + demo1.demoSelect());    }  

  catch (Exception e) { 
    e.printStackTrace();  } 
     
  System.out.println("\nEnd  
    DemoClient...\n");  }  } 

 
5.2 Stateful Session Bean 

The next example is a stateful session 
bean called CountBean.  It is another very basic 
example, but it demonstrates how stateful 
session beans maintain a conversational state 
with the client.  The goal of this bean is simply 
to count by one.  Thus there will only be one 
business method, count( ), which simply returns 
an integer to the client after incrementing it.  In 
this case, the value of the returned integer 
actually represents the conversational state of 
the bean. 

The interfaces of this bean are similar to 
the interfaces of DemoBean.  The remote 
interface defines the count( ) method, and the 
home interface contains the create(int val) 
method.  Notice that this method create(int val) 
cannot be included in a stateless session bean.  
Stateless session beans forbid parameters in the 
create( ) method, whereas stateful session beans 
allow parameters.  In this example val is the 
starting state of the counter. 

The code of the bean class is also 
similar to DemoBean.java with one main 
difference.  Since we added a parameter to the 
create(int val) method, the ejbCreate(int val) 
initialization method now takes val as a 
parameter as well.  Again, this would not be 
allowed for stateless beans.  Another important 
part of this bean class is that it contains an 
instance variable that gets initialized to val.  It is 
this instance variable that gets incremented and 
returned to the client in the bean’s business 
method, count( ). 

The main lesson to be learned in this 
demonstration is the difference between stateless 
and stateful session beans.  By using simple 
examples like DemoBean and CountBean, it is 
sometimes difficult to understand the full effects 
of maintaining a conversational state.  An 
interesting assignment to illustrate this 
difference is to deploy the CountBean as both a 
stateful and stateless session bean.  This requires 
making a few changes to the code, namely 
removing the parameters in the create( ) and 



ejbCreate( ) methods.  Once the parameters are 
removed the bean will deploy as either a 
stateless or stateful session bean. 

Once the bean is changed and deployed, 
a client program is needed that creates multiple 
instances of CountBean.  Have each instance 
call the count( ) method at least twice, and print 
out the value that is returned to the client.  In the 
case of the stateless session bean, the value 
returned is incremented each time, regardless of 
the fact that different instances are calling the 
method.  The results are 1, 2, 3, 4, 5, 6 and so 
on.  For the stateful beans however, each bean 
instance has a different “copy” of the shared 
variable, so the incrementing that takes place is 
specific to each instance.  For example, if three 
bean instances are created in the client program, 
the results are 1, 1, 1, 2, 2, 2, etc.  This 
comparison gives students a more precise and 
accurate idea of the difference between the two 
types of session beans. 
 
5.3 Container-managed Entity Bean 

The last example is a container-managed 
entity bean.  This bean will represent a row in a 
database that consists of six fields: login, email 
address, phone number, IP address, socket 
address, and last name.  The structure of the 
remote interface is exactly the same as the 
previous two beans.  The home interface is 
essentially the same as well, with the addition of 
the findByPrimaryKey(Object primarykey) 
method.  This is used for searching the database.   

The most apparent differences between 
the two types of beans appear in the code of the 
bean class.  The code for DirectoryBean.java is 
shown below.  Notice that this bean implements 
EntityBean instead of SessionBean, and defines 
six instance variables that correspond to the six 
fields of the database.  Also, the ejbCreate( ) 
method requires six parameters that represent 
the field values and initialize the instance 
variables.  In entity beans, each ejbCreate( ) 
method (there may be more than one) has an 
ejbPostCreate( ) method that accepts the same 
parameters.  Most entity beans include “set” and 
“get” methods for the instance variables, too. 
 
//Container managed entity bean 
package direct; 
import java.rmi.RemoteException; 
import javax.ejb.CreateException; 

import javax.ejb.EntityBean; 
import javax.ejb.EntityContext; 
 
public class DirectoryBean implements 
EntityBean { 
  public String login;  public String email; 
  public String voice;  public String ip; 
  public String sockad; public String name; 
 
  public String getLogin() { 
        return this.login;  } 
 
  public String getEmail() { 
        return this.email;  } 
  public String getVoice() { 
        return this.voice;  }   
  public String getIp() { 
        return this.ip;  }   
  public String getSockad() { 
        return this.sockad;  }   
  public String getName() { 
        return this.name;  } 
 
  public String ejbCreate(String login,  
    String email, String voice, String   
    ip, String sockad, String name)  
    throws CreateException{ 
      this.login=login;   this.email=email; 
      this.voice=voice;   this.ip=ip; 
      this.sockad=sockad; this.name=name; 
      return null;  } 
 
  public void setEntityContext(  
    javax.ejb.EntityContext ctx){ } 
  public void ejbActivate() { } 
  public void ejbPassivate() { } 
 
  public void ejbPostCreate(String  
    login, String email, String voice,  
    String ip, String sockad, String  
    name) {} 
 
  public void ejbRemove() throws  
    RemoteException { } 
 
  public void ejbLoad() { } 
  public void ejbStore() { } 
  public void unsetEntityContext(){}   } 
 
 
 Before a bean can be accessed, it must 
be compiled and deployed.  During the 
deployment process, the primary key field 
should be specified as login.  In order to create 
new rows in the database, a client is needed to 
create new bean instances.  The code for the 
client is simple.  It asks the user for six field 
values, and creates a new bean instance using 
the entered data.  The login name should be used 
as the primary key, and the client should be 
prepared to handle an exception thrown by the 
bean class if a repeated login name is entered.  
Another client is needed to search the database.  
This client will ask the user for a login name to 



search for, and then locate the desired bean 
using the findMyPrimaryKey(String login) 
method.   
 
6. EJB PROJECT 

After experimenting with some of the 
simple beans described in the previous section, it 
may be desirable for students to work on a larger 
project involving EJB.  The project is slightly 
more difficult and includes both stateless session 
beans and container-managed entity beans.  The 
goal is to create an information directory 
application that stores data in the same six fields 
as before: login, email address, phone number, 
IP address, socket address, and last name.  
Within this directory, it is possible to update the 
stored information, create new entries, and 
search for entries by login name.  The 
assignment is to use three clients, three session 
beans, and one entity bean to model this 
scenario.   

The directory structure itself can be 
created using entity beans just like the one 
described in the preceding example.  Each entry 
in the directory is represented by an instance of 
this entity bean.  Instead of using clients to add 
new entries and search the database as before, 
session beans should be used.  Coding the beans 
should not be overly difficult for students, 
however making the beans communicate with 
one another can be complicated at times.  One 
approach is to have the clients locate both the 
entity and session beans’ home interfaces using 
JNDI.  A reference to the entity bean should 
then be passed to the session beans.  Each 
session bean must have it’s own client, although 
they will be very similar in structure.  This 
project allows students to gain experience with 
session beans, entity beans, and clients that 
interact with both types of beans at once.   
 
7. EVALUATION OF EJB 

EXPERIENCES 
Learning and using EJB was a very 

challenging task.  The coding itself was not 
difficult, however getting the deployment tool 
configured so that the beans were deployed 
correctly was extremely frustrating at times.  
The problem was that every deployment tool 

was different, and some settings were machine 
dependent.  It was also hard to find 
documentation that answered my questions.  I 
often resorted to trial and error.  However once I 
got the first bean to deploy, getting the others to 
work was much easier.  The more I worked with 
EJB, the more comfortable I was using it, and 
the more I understood.  It was a great feeling to 
finally get a series of interacting beans up and 
running smoothly.  –Jeannie Albrecht 
 
8. SUMMARY 

There is a growing demand for 
transferable, platform independent, database 
managing applications in the business world 
today.  EJB provide a simple and effective 
alternative to previous solutions by 
incorporating the portability of JavaBeans, the 
database managing concepts of JDBC (Java 
Database Connectivity), and distributed 
processing theories of JavaRMI into one 
revolutionary new technology.  Students enjoy 
learning about real world applications of the 
concepts taught in both Database Systems and 
Parallel and Distributed Processing courses.   
 
9. ACKNOWLEDGEMENTS 

The authors express their appreciation to 
Gettysburg College for partially funding this 
project. 
 
10.  REFERENCES 

[1]  Monson-Haefel, Richard.  Enterprise  
      JavaBeans.  O’Reilly & Associates,  1999. 
[2]  Roman, Ed.  Mastering Enterprise  
      JavaBeans.  Wiley Computer Publishing,    
     1999. 
[3]  Simplified Guide to the Java 2 Platform,   
       Enterprise Edition, Sunsoft,         
       http://java.sun.com/j2ee/j2sdkee/techdocs 
       /guides/j2ee-overview/cover.fm.html 
[4]  Enterprise JavaBeans Tutorial, Sunsoft,  
       http://developer.java.sun.com/developer 
       /onlineTraining/Beans/EJBTutorial/index.html 
[5]  Enterprise JavaBeans FAQ, Sunsoft,  
       http://java.sun.com/products/ejb/faq.html 


