Applying Caching Techniques for Dynamic Personalized
Content in Software Engineering Projects

David E. Athey
PaperThin, Inc.
300 Congress Street, Suite 303
Quincy, MA 02169
(617) 471-4440
dathey@paperthin.com

ABSTRACT

The hallmark of an undergraduate program is
a successful co-curricular program. This program may
have several forms ranging from a programming team
to an active summer research program. The important
ingredient in any program is student-faculty interaction
in the development of solutions to current computer
science problems.

This paper explores the use of research in a
software engineering course at Gettysburg College. The
research involves the use of Java applets and servlets on
web pages within a highly personalized knowledge
portal as one alternative to improve the cacheability of
pages containing dynamic content, and decrease the
overall load time for these pages.

Keywords: Dynamic content, Caching, Java Applets,
Java Servlets, Coldfusion

1. INTRODUCTION

Performing research at a small liberal arts
college supports the academic mission of the
institution. By being engaged in research, faculty
members remain current in their field and maintain
classes that are crisp and exciting for students to take.

Incorporating research into the classroom is
not an easy task. Students at an undergraduate
institution are just initiating involvement in a
discipline and are working at honing fundamental
skills within their field. Information at the research
level is at best accessible to seniors and advanced
juniors.

For students to appreciate research, they
need to have an understanding of a discipline at four
distinct levels. The first is at the foundation level
where basic concepts and skills are well known and
mastered. The second level is comprehending the
outstanding problems and questions of the discipline.
Transitioning from simply learning the material to
asking questions about unresolved issues is a sign of
maturity in a subject area. The third level is using the
solutions of others to solve similar problems in the
students own projects. The fourth and final level is
students developing solutions and approaches to
problems on their own.

TSupported under a National Science Foundation
Graduate Research Fellowship.

Jeannie R. Albrecht’
Duke University
Dept of Computer Science
Durham, NC 27708
(919) 660-6556
albrecht@cs.duke.edu

Going beyond these four levels of
understanding at the undergraduate level is very rare.
It is uncommon for students to independently develop
solutions to open research problems. A more realistic
goal is for students to implement or refine an outline
developed by a professor.

There are three basic approaches to
incorporating research into a co-curricular program.
The first is to have students work on projects over the
summer as research assistants. The second is to have
a student working throughout a semester as part of an
independent study. The third, which this paper
addresses, is having students work in groups to
incorporate research as part of a semester project
within the boundaries of a course. This last approach
is a hybrid between a curricular and co-curricular
approach.

The project this paper discusses involves the
use of dynamic content and personalized data on the
Internet today. As the presence of non-static web
pages continues to increase, the effectiveness of
traditional proxy caches decreases. Conventional
caching approaches ignore pages containing dynamic
content so that each request must be retrieved from
the server. To combat this trend, it is the
responsibility of the content providers to adapt their
pages and make them more cacheable. The semester
project addressed in the remainder of this paper
explores using Java applets and servlets as one
possible solution to this problem.

This paper is organized as follows. The next
section introduces the problem of rendering dynamic
content, followed by a section that discusses dynamic
content and traditional caching techniques. In section
4, we give a detailed description of the
implementation of our caching scheme. Section 5
shows the results from our performance experiments.
The sixth section outlines the software engineering
course in which the research was integrated,
including the approach taken, results, and experience
of the faculty member. Section 7 summarizes our
findings and draws conclusions.

2. INTRODUCTION TO CACHING RESEARCH

In recent years, there has been an increasing
trend in the amount of dynamic content on the
Internet. This has had a negative impact on the
effectiveness of web proxy caches since most
dynamic content is uncacheable. Proxy caches
typically exist at the boundaries of large
organizations, and they improve the performance of
the World Wide Web infrastructure by caching
popular documents that are shared among multiple
users [1]. Since most dynamic content includes
personalized, user-specific information, it cannot be
cached like static HTML pages. Each request
generates a cache miss and must be served by the
web server, which leads to a bottleneck at request
time [2].

As the use of personalized content continues
to become more prominent on the WWW, content
providers must find a way to improve the
cacheability of dynamic pages. Recent studies have
shown that many sites containing user-specific
content are actually composed of a dynamic
composition of static data [2]. In these cases, much
of the processing required to load the pages can be
completed ahead of time and cached for quicker
access. Thus while the whole page cannot be served
from a proxy cache, various static components can be
retrieved and loaded to keep the amount of content
that must be generated at the server to a minimum.

The use of Java applets is one approach to
making dynamic web pages more cache friendly.
When using applets, the static frame of the page can
be stored and served from the proxy cache, while the
dynamic content can be handled by invoking the
applet. The applet can then process the request and
retrieve the necessary personalized information [3].
This method takes advantage of the way in which
browsers render applets. The browser will reserve a
space on the page for the applet and then continue
loading the rest of the content. This has the added
benefit of allowing the remainder of the page to load
instantly instead of waiting for the entire page to be
retrieved from the server.

In addition to using applets to serve dynamic
content, further improvements in load time can be
achieved by caching within the applets. In many
cases, the applets retrieve material from servlets or
images that are shared among all users. Thus there is
no reason for the servlets to process each request
individually. The responses that the servlets retrieve
from database queries, for example, can also be
cached to eliminate the overhead of database
communication for later requests. In our study, we
investigated the effectiveness of these techniques for

an Internet based college portal system containing
highly personalized content.

3.CACHING DYNAMIC CONTENT

3.1 What is Dynamic Content?

Dynamic content is a term typically used
among web users to describe any user-specific data
that is generated at the time of the request. This
includes database queries, search engine responses,
time-specific information such as stock quotes, and
any data that is generated by a server that returns a
different object for each access. It allows content
providers to create more personalized web pages that
are tailored to individual user preferences.

Since web pages containing dynamic objects
change with each access, proxy caches attempt to
identify and not cache instances of the personalized
content [3]. Thus it is important to design these
pages in a cache-friendly way and to extend the
benefits gained from caching as much as possible.
Fortunately, most pages that contain dynamic content
also include some static content that is responsible
for formatting specifications, headers and footers,
and other unchanging information. This property can
be leveraged to improve the proxy cache hit rate.

3.2 Traditional Caching Techniques

Caching is motivated by the simple idea that
if some information is retrieved, and there is a
possibility that this information will be used again in
the future, then a copy of the data should be stored in
an easily accessible location for quick future access.
While specific caching techniques vary greatly, the
overall goal in all caching strategies is to move the
web page or data object “closer” to the user in terms
of network distance. Typically objects stored on
computers with the same Local Area Network (LAN)
can be retrieved much quicker than those that are
retrieved from remote computers on other networks.

Although most web browsers provide some
amount of caching on disk drives and in memory,
special cache servers (or proxies) are often used to
provide a shared cache to a number of different users
in a certain location connected to the same LAN. If a
page can be retrieved from a proxy cache residing on
the same LAN rather than having to travel across the
wide area to a remote host, the time until the request
is satisfied is significantly reduced. In the case of
proxy caches, the proxy server attempts to identify
and avoid storing pages containing dynamic content.
Thus the benefits of caching are not gained.

Another traditional caching technique is to
prefetch web pages before users request them, so that
they are stored in the local or proxy cache for future
use. In this case, the proxy server must speculate on

which page the user will request next based on the
observed past actions. Successful prefetching will
lower the latency seen by users when requesting
objects, increasing the performance and hit rate of the
proxy cache.

One important feature of these techniques is
that they both focus on delivering a complete web
page to the requesting user in a reduced time. If
dynamic content exists, these methods are ineffective
and pointless. Smarter strategies are needed to
achieve the same performance gain as static page
caching.

4. OUR IMPLEMENTATION

In an effort to take advantage of the fact that
most web pages contain a combination of dynamic
and static content, our caching technique separates
the pages into cacheable and uncacheable sections.
Unlike traditional caches, our method does not try to
deliver the web page to the user as one contiguous
object, but rather in pieces that are retrieved
separately.

We assume the most important goal is to get
at least part of the data back to the user as quickly as
possible. Since a user cannot view an entire web
page at once, by retrieving the static sections quickly
from cache and using Java applets to fill in the
smaller dynamic sections, the user is able to begin
viewing the static information while the dynamic data
is still being loaded. This minimizes both the amount
of personalized data that must be sent over the
network for a given request, as well as the time the
user must wait to begin viewing the page.

4.1 CNAV: Campus Knowledge Portal

In January of 2000, a group of IT
professionals from Gettysburg College along with
several recent graduates began the development of a
Campus Knowledge Gateway named CNAV. CNAV
interfaces with campus data warehouses, filtering the
data from each source as it transports the data into its
own repository. Once the data is stored within
CNAYV, CNAYV then associates information by using
ID, interest, and keyword relationships.

Once CNAV has established relationships
among its information, it then secures its knowledge
through two primary mechanisms: group and user
defined privacy settings. Users can then access the
data and request personalized information relating to
courses, finances, campus events, and contact
information from any computer connected to the
Internet.

CNAYV also provides administrative modules
such as employee timesheets, computer helpdesk,
inventory, advising tools, and an online portfolio

system. At Gettysburg College and other institutions,
CNAV has become the virtual town hall where
members come to learn about campus events, voice
opinions, and interact with other members of the
community.

4.2 Caching Techniques in CNAV

Our caching strategy was developed within
the scope of the CNAV campus portal. Since web
pages in CNAV contain high amounts of dynamic
content, traditional caching methods did not achieve
a high performance gain. We focused on the two
most frequently accessed pages in the system that
correspondingly have the most dynamic and
personalized content. Both of these pages contain
approximately ten sections of user-specific data, as
seen in Figure 1. The areas of the page where
dynamic content is retrieved are referred to as
channels.

4 CNAV-3 Navigation - Microsoft Internet Explorer

File Edt View Fovorites Tools Help

[=] B @ O searcn ¢ ravorites @ media €2 - B = 8
oss[@ B eSS

D ay B
|cat rype | AlCalenaar 1ypes @

b

.
BE i00em ssconev Grams ¥

Figure 1: This is a screen shot of CNAV that shows the
multiple channels containing dynamic content.

As stated above, our basic approach to
caching in CNAYV is to deliver a web page in pieces
rather than wait for an entire page to become
available. This works especially well for our target
pages since they are a combination of personalized
channels and images, in addition to the templates
containing static content.

Our strategy has three components. First,
we create a general template page that is appropriate
for each realm of user. Users in CNAV are
classified into a realm such as faculty, student,
alumni, and parent. This template page can be
replicated on several servers using traditional caching
techniques. Second, the template page has content

holes that are first filled with an empty container to
allow the browser to render and size the page. Third,
servlets exist to process information from the
database to produce dynamic personalized content.
The container requests its content from a servlet that
uses a combination of cached data, database queries,
and algorithmic processing to produce the necessary
content for the container.

For our purposes, the first type of container
is an HTML image tag with predefined width and
height. For the image tags, the servlet returns gif or
jpg data for the image. The URL that is sent to the
servlet in the SRC attribute of the IMG tag contains
the ID of the user who is currently viewing the page
and an ID of the entity to which the image is
associated. The servlet uses both IDs to personalize
the image content it sends back.

An example of the personalized image
content can be found in the Event Channel of CNAV.
There are three images that inform the user about
each event. The most significant of these images is
the interest matching image that indicates to a user
how interesting the event is based on their
preferences. This image is a pie chart that is
calculated for each person/event pair. The servlet
that does this calculation loads an interest vector for
every user and every event. It then does a bitwise
AND operation to calculate the intersecting interests
for the events and users. Based upon the number of
intersecting interests, the servlet returns an
appropriate pie chart image indicating the number of
overlapping interests.

The second type of container is a Java
Applet with a swing based HTML panel. In this
case, the servlet returns HTML that the applet
renders. The applet contains all the information for
one single channel. This allows for a fixed sized
channel which simplifies page layout. The user can
then use scrollbars to view the contents of the applet
and individual channels. This is a side benefit of
using applets for the entire channel content. Similar
to images, when using applets the user’s ID and any
personalized data is embodied in the URL that is sent
to the servlet.

To better describe how this system works,
consider the event channel. In the event channel, the
user can specify preferences on the calendar
indicating which categories of events are drawn from
the data warehouse to populate their screen. For
example, users can choose to see all campus events,
or they can choose just the sporting events. Java
applets are used in the channels to retrieve dynamic
content. The applets communicate with Java servlets
and images to obtain the user-specified data from the
server. In the URL that is sent to the servlet, the
user’s ID is sent along with the calendar categories

that the user requested. The servlet then pulls the
events either from the data store or from its memory,
which also acts as a cache, and then sends back the
formatted HTML to the applet showing the specific
list of events the user is requesting.

The following is a time line depicting the
process by which personalized data is retrieved.
Figure 2 illustrates the procedure.

Time 0: The server is started and a template page is
built for each realm in the portal. This template is
updated periodically throughout the day. The
template is built in Coldfusion Markup Language.
This template can be stored in the first-level cache
since it is common to all users. It is accessible by
several front-end Coldfusion proxy servers that serve
the page to requesting users.

Browser

Web Page Template

Static Content (Common to All Users)

Personalized Event Channel (Applet)

[Interest Image] [HTML]

A A

//’

Tmage Servlet HTML Servlet
(Cached gif (Cached
and ipg Data) Database Data)

Figure 2: This diagram shows how channels interact with
servlets to retrieve user-specific data.

Time 1: Each servlet is initialized on the server with
intermediate data from the database. Preloading
intermediate data acts as a local cache for the servlets
since it attempts to prefetch data and avoid expensive
database queries. The cached data is stored in global
memory so that each servlet thread can access it. The
servlet updates its cache periodically throughout the
day.

Time i: A user requests the page from a standard web
browser.

Time i+1: The Coldfusion application server renders
the template page by inserting the user’s portal ID
into the appropriate locations in the template.

Time i+2: The static HTML content is loaded into
the browser.

Time i+3: The user begins to read the static content
while the Event Channel in the template uses an
applet to request the image source from the image
servlet. Since applets are given a predefined space
on a web page by browsers, the space on the page for
the image is reserved although the image has not
been retrieved. The other Event Channel applet starts
and requests its content from the HTML servlet that
stores database query results in formatted HTML.

Time i+4: The other channels in the template operate
in a similar fashion. Each servlet on the server
processes its data along with the additional
information in the requesting URL. The servlets then
retrieve either the requested image or HTML and
send the results back to the applets in the browser.

Time i+5: The requested images are displayed by the
browser and the Event Applet displays the HTML
received from the servlet. The user can now view the
personalized content.

4.3 Implementation Status

Currently, the production version of CNAV
employs two caching techniques. The main template
page for each user realm is generated every hour and
updated in the Coldfusion servers. Additionally,
image content on the opening portal page is cached
using the prefetching technique previously described.
For each user-specific image, the source for the
image is a servlet that selects the appropriate image
to send to the browser. These techniques have been
in full production for two years. At times, there can
be up to 100 images produced this way on an opening
page, depending upon the number of News and
Events objects posted to the portal.

The implementation of different channels in
the applet container is still in the testing phase of the
development process. Using applets improves
performance by decreasing load time; however some
challenges arise with formatting. Currently, the
testing is focused on the web page layout and style.
Applets are scheduled to be moved to the full
production machine during the summer of 2003.
There are also some minor Java version compatibility
issues within browsers that need to be resolved with
legacy applets. Some methods available to applets in
older Java versions have been deprecated, and these
applets need to be rewritten before the caching applet
container can be rolled out to production.

5. PERFORMANCE

The performance of the image and applet
container was evaluated separately. For a page with
ten channels and several hundred personalized
images, the browsers and all servers run the risk of
timing out when trying to generate the channel page
and load each image in series. If they do not time out
completely, load time is unreasonable. On the other
hand, pages load quickly when using servlets to
generate the customized image data. During our
testing, servlets enhanced pages involving ten
personalized channels showed text and image
information within a fraction of the time seen from
alternative display methods.

We centered our testing on the Event
Channel for evaluating the applet caching technique
since this channel contains the most dynamic
information. We artificially loaded 2000 events to be
displayed at once. Even though there will not be
2000 events happening on Gettysburg College’s
campus during a one week period, we wanted to
evaluate this technique under heavy load.

We tested four different configurations of
caching. The first was no caching at all where the
2000 events were rendered by the server individually
for each request. The second configuration used a
template page with the applet container embedded in
it. The applet requested its content from the same
HTML-based page used in configuration one. The
third design had the same template as the second
configuration, but now the applet loaded the content
generated from a servlet that pulled its data from the
database for each request. The servlet generated
HTML from the database query result to send back to
the applet. The fourth configuration again used the
template page with the applet; however, this time the
content was retrieved from a servlet that had
previously cached all the data necessary to generate
the HTML immediately. In fact, the servlet cached
the actual HTML. Figure 3 shows our results.

We recorded four times for each
configuration. The first time was the number of
seconds required to see any data load in the browser.
The second time was the number of seconds to see
event data. The time to see half of the 2000 total
events was the third measurement, and the final time
was the complete loading of all 2000 events.

The results both validate our approach and
reveal an interesting tradeoff. The overall goal of the
caching techniques is to get something as quickly as
possible to the user. Our approach has accomplished
this as seen in the first three timing lines on the
graph. The time decreased in each experiment with
the lowest time occurring with the Applet—Servlet
Cache configuration. The tradeoff is that the total

load time for this configuration increased. We have
determined that this is because the applet requires
more time to format the data and update its scroll
bars. However since the scroll bars on the applet
allow for fixed sized channels with variable length
content, we found this tradeoff acceptable.

LUGU 1IIIGS Y¥SISUD LaLHG ISLHIIYUGT

——————————————————

First Channel Content Loaded
Half Channel Content Loaded
All Channel Content Loaded

70

“ A
“ \
o s N

20

: ~\,

HTML -No _ Applet- HTML __ Applet - Applet -

SeToTTas
w
o
=

Cache No Cache Servlet No Servlet Cache
Cache

vavuc 1yps

Figure 3: Results depicting load times for different cache
configurations.

6. RESEARCH IN THE CLASSROOM

6.1 Software Engineering: Senior Capstone

At Gettysburg College, the software
engineering course is taught as the senior capstone
course that is taken by all second semester computer
science majors. In this course students form groups
and develop an application for clients outside the
college.

This course has traditionally served another
purpose at Gettysburg by providing a venue for
experimenting with new technologies. For example,
in the Spring of 1996 several groups started
developing applications in Java with the first beta
compiler. Several new approaches incubated in this
course have transitioned into the main stream
curriculum.

Each group in the course works their project
through the entire life cycle. Each group gets an
overview of their client’s general needs. The group
then interviews the client to get a full understanding
of the problem. After this interview, the group

generates a full requirements document covering
every aspect of the project from functional
specifications to the cost of the system.

Once the requirements document has been
finalized, the students implement the application.
Many times, the students find themselves modifying
the requirements or seeking more information from
the client. As part of the last component of the life
cycle, the groups present their application to the
client.

6.2 Integration Approach

The computer science department at
Gettysburg College has a tradition of working with
students on research projects over the summer. This
work finds its way into the curriculum through
lectures and presentations given by the research
students.

To experiment with integrating research
deeper into the classroom, a group from the senior
capstone course was selected to incorporate the
caching techniques detailed in this paper into their
web-based application. The application is an
inventory control system for the athletic department
at the college.

There are two twists to the project. First, the
college purchases its major supplies through a
bidding process where the required inventory list is
given to vendors in order for them to submit such a
bid. The second is the desire to control inventory
while out on the playing and practice fields. Here, a
wireless PDA device is used to scan bar codes of
training supplies on the field. If the PDA has a
network connection, then it will adjust the database.
If no network connection is available, the PDA will
cache the database transaction and commit it at
another time.

The inventory application is well suited for
this type of caching research. The best area is in the
bidding processing. It is helpful for the client to have
multiple channels on one page to simultaneously
review the details of the bids. There is one channel
that is an aggregate of all the minimum bids.
However, some vendors send in non-standard bid
items and thus the client must review each item in
each bid.

The applet text-based cache is the solution
used in the project. Since the project has no images
associated with it, there was no need for the image
caching. Also, the amount of data that was
processed did not require the use of servlets. Each
applet referenced the ColdFusion server directly
without any other processing.

6.3 Results and Experiences

The applet caching solution worked well for
this application. The student group presented the
application using the applet and the research.
Unfortunately, the students found that the application
could not use all the components of the research.
This is one drawback to incorporating research into
class projects instead of presenting a straightforward
lecture of the research itself. To counteract this
situation, the professor supplemented the student
group presentation with a broader, more traditional
mini-lecture on the research contained in this paper.

7. SUMMARY

Disseminating research to undergraduate
students involves more preparation than
disseminating it to graduate students or other
researchers. From the experiences in this paper, a
multi-pronged approach is best. A traditional lecture
is adequate, but the students have no direct
experience with the research. Incorporating the
research into a group project is also adequate, but at
times does not highlight the strengths of all the
aspects of the research. The final approach involving
the student group presenting their application with
certain aspects of the research, coupled with the
professor’s mini-lecture on the remaining aspects,
proved to be the best solution.

The research embodied in the paper shows
that as the popularity of personalized web pages on
the Internet continues to grow, the use of traditional
caching techniques is becoming less effective. Pages
containing user-specific content are typically
considered uncacheable and are ignored by
conventional proxy caches. In most cases, these
pages contain a combination of both static and
dynamic data. While the dynamic data must be
retrieved from the server for each request, the static
sections of the page are common to all users and can
be cached. Through the use of Java applets and
servlets within an enterprise knowledge portal, we
were able to exploit this feature to decrease the load
time of personalized pages and reduce the amount of
data that must be retrieved from the server for each
request.

While our results indicate that a significant
reduction in load time is achieved using applets and
servlets, we also found that there was some overhead
involved with using Java to format the data retrieved
from the servers. In the future we plan to experiment
with improving the applet load time, as well as
address some of the formatting and compatibility

problems that arise when using Java applets in
different browsers.

8. ACKNOWLEDGEMENTS

The authors wish to acknowledge Professor Rod
Tosten for allowing us to use his software
engineering course as a forum to disseminate this
research.

9. REFERENCES

[1] A. Wolman, G. Voelker, N. Sharma, N.
Cardwell, M. Brown, T. Landray, D. Pinnel, A.
Karlin and H. Levy. Organization-Based
Analysis of Web-Object Sharing and Caching.
In USENIX Symposium on Internetworking
Technologies and Systems, 1999.

[2] K. Rajamani and A. Cox. A Simple and
Effective Caching Scheme for Dynamic Content.
Rice University Computer Science Technical
Report, November 2000.

[3] M. Rabinovich and O. Spatscheck. Web Caching
and Replication. Addison-Wesley, 2002.

[4] Pei Cao, Jin Zhang, and Kevin Beach.

Active Cache: Caching Dynamic Contents

on the Web. In Proceedings of
ACM/IFIP/USENIX International Middleware
Conference, 1998.

