
Lego Robotics Camp

Day 1: Programming basics

2

Welcome!

• Camp overview
• Goals

• Computational thinking
• Python programming

• Robotics with Lego Mindstorms EV3 kits

• Programming, Lego building, discussions, and unplugged activities

• Work hard and have fun!

3

Daily schedule

• 9:00-9:15 Arrival
• 9:15-10:15 Computational thinking unplugged activity
• 10:15-10:30 Snack and mask break
• 10:30-12:00 Daily lesson and lab overview
• 12:00 - 1:00 Lunch and mask break
• 1:00-2:30 Lab (programming activity)
• 2:30-3:30 Wrap-up and free time (soccer, swimming, etc)

• 3:30 Show & tell and dismissal

4

Rules

• Treat each other with respect
• Don’t be disruptive
• No such thing as a stupid question
• Be patient (with each other and with me!)
• Be kind to your robots J
• Don’t give up
• Wear your masks when indoors

5

Today’s Plan

• Today we will:
• Discuss how computers solve problems

• Design algorithms for simple, everyday tasks

• Get to know our robots

• Gain experience with our programming environments

• Learn about variables

6

Computational Thinking

• Think like a computer scientist!
• Four pillars of CT:
• Decomposition – break big problems up into small pieces

• Pattern recognition – look for similarities within a problem

• Abstraction – ignore unimportant information and focus on stuff that
matters

• Algorithms – develop step-by-step rules for solving the problem

• We will use these four pillars to solve problems with our robots!

7

Peanut Butter and Jelly!

• Make an algorithm for making a PB&J sandwich
• What is an algorithm?
• A process or set of rules to be followed in

calculations or other problem-solving operations,
especially by a computer

• Algorithms provide computers with a successive
guide to completing actions

8

Peanut Butter and Jelly!

• Make an algorithm for making a PB&J sandwich
• Supplies:
• Peanut butter

• Jelly

• Loaf of bread

• Two knives

• Plate

• Work with a partner! Write down your
steps. Be specific!

9

Peanut Butter and Jelly!

10

What Happened?

• It’s easy to overlook crucial information and details!
• As a programmer, you need to develop specific directions to

help the computer solve your problems.

• Try again!

11

Peanut Butter and Jelly!

1. Take a slice of bread.
2. Open the jar of peanut butter by twisting the lid counter-clockwise
3. Pick up a knife by the handle
4. Insert the knife into the jar of peanut butter
5. Withdraw the knife from the jar of peanut butter and run it across

the slice of bread
6. Take a second slice of bread
7. Repeat steps 2-5 with the second slice of bread and the jar of jelly
8. Press the two slices of bread together such that the peanut butter

and jelly meet

12

Lessons Learned

• Remember our four pillars:
• Decomposition – break big problems up into small pieces
• Pattern recognition – look for similarities within a problem
• Abstraction – ignore unimportant information and focus on stuff that

matters
• Algorithms – develop step-by-step rules for solving the problem

• Computers are really not that smart!
• But they are VERY good at following directions. They only do

EXACTLY what you tell them to do.
• We must provide specific instructions for solving problems

13

Robot Basics

• Helps to know what basic actions we can use to instruct our
robot

• What actions might we want our robot to perform?

14

Robot Basics

• Helps to know what basic actions we can use to instruct our
robot

• What actions might we want our robot to perform?
• Sound: beep, speak?

• Display: lights on/off, show image

• Movement: go forward, backward, turn/rotate, stop

• Advanced actions: react to “sensed environment” in some way
(requires sensors for light, sound, temperature, touch, etc)

15

Robot Basics

• Today we will begin learning how to perform very basic
actions with our robots

• For the rest of the week, we’ll use these basic actions to solve
problems

16

Let’s Meet Our Robots!

• FYI: My robot looks a little different than yours
• Let’s start with some simple examples with basic movement

17

(A video, just in case my
robot misbehaves…)

18

Run basic_movement
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import (Motor, TouchSensor, ColorSensor,
InfraredSensor, UltrasonicSensor, GyroSensor)
from pybricks.parameters import Port, Stop, Direction, Button, Color
from pybricks.tools import wait, StopWatch, DataLog
from pybricks.robotics import DriveBase
from pybricks.media.ev3dev import SoundFile, Image, ImageFile

Create your objects here.
ev3 = EV3Brick()

Initialize the motors.
left_motor = Motor(Port.B)
right_motor = Motor(Port.C)

Initialize the drive base.
robot = DriveBase(left_motor, right_motor,
wheel_diameter=56, axle_track=114)

Set eyes
ev3.screen.load_image(Image(ImageFile.NEUTRAL))

Go forward and backwards for one meter.
robot.straight(500)
ev3.speaker.beep()

robot.straight(-500)
ev3.speaker.beep()

Turn clockwise by 360 degrees and back again.
robot.turn(360)
ev3.speaker.beep()

robot.turn(-360)
ev3.speaker.say(“hello campers”)

19

BREAK

20

Getting Started

• Before we build, let’s go over
some basic info

• We’ll start with the EV3 brick!

21

Hardware

22

Visual Studio: Create New Project

23

Visual Studio: Writing Code

24

Visual Studio: Open Existing Project

25

Visual Studio: Connecting the Brick
• Turn EV3 brick on first

26

Connecting to Brick
(Don’t forget to turn
on the brick using
the center button.)

27

Visual Studio: Running Program

28

Demo: Moving Motors

1. First just run the default program
2. Next plug a large motor into Port B
3. (We’ll keep it plugged into our

computer for now)
4. Add these 2 lines to the bottom of

our program and run it again

test_motor = Motor(Port.B)
test_motor.run_time(500, 5000)

5. What happens?

29

Our first (closer) look at Python!
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import Motor
from pybricks.parameters import Port

Initialize the EV3 Brick.
ev3 = EV3Brick()

Write your program here
Play a sound.
ev3.speaker.beep()

Initialize a motor at port B.
test_motor = Motor(Port.B)

Run the motor 500 degrees per second, for 5000 ms = 5 seconds
test_motor.run_time(500, 5000)

30

Our first (closer) look at Python!
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import Motor
from pybricks.parameters import Port

Initialize the EV3 Brick.
ev3 = EV3Brick()

Initialize a motor at port B.
test_motor = Motor(Port.B)

Write your program here

Play a sound.
ev3.speaker.beep()

Run the motor 500 degrees per second, for 5000 ms = 5 seconds
test_motor.run_time(500, 5000)

31

Our first look at Python!
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import Motor
from pybricks.parameters import Port

Initialize the EV3 Brick.
ev3 = EV3Brick()

Initialize a motor at port B.
test_motor = Motor(Port.B)

Write your program here

Play a sound.
ev3.speaker.beep()

Run the motor 500 degrees per second, for 5000 ms = 5 seconds
test_motor.run_time(500, 5000)

This tells our robot where to find
the programming libraries we are
using. You can ignore this for now!

32

Our first look at Python!
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import Motor
from pybricks.parameters import Port

Initialize the EV3 Brick.
ev3 = EV3Brick()

Initialize a motor at port B.
test_motor = Motor(Port.B)

Write your program here

Play a sound.
ev3.speaker.beep()

Run the motor 500 degrees per second, for 5000 ms = 5 seconds
test_motor.run_time(500, 5000)

Lines that start with # are called
comments. They aren’t part of
the program but are very useful
and important for making our
programs easy to understand.

33

Our first look at Python!
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import Motor
from pybricks.parameters import Port

Initialize the EV3 Brick.
ev3 = EV3Brick()

Initialize a motor at port B.
test_motor = Motor(Port.B)

Write your program here

Play a sound.
ev3.speaker.beep()

Run the motor 500 degrees per second, for 5000 ms = 5 seconds
test_motor.run_time(500, 5000)

• This gives a name to our
brick. In this case, the name
is ev3. For the rest of the
program, every time we say
“ev3” we know we are
talking about our brick.

• ev3 is called a variable.
• A variable is just a name for

referring to an object. Try
changing it!

34

Our first look at Python!
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import Motor
from pybricks.parameters import Port

Initialize the EV3 Brick.
ev3 = EV3Brick()

Initialize a motor at port B.
test_motor = Motor(Port.B)

Write your program here

Play a sound.
ev3.speaker.beep()

Run the motor 500 degrees per second, for 5000 ms = 5 seconds
test_motor.run_time(500, 5000)

• test_motor is the name we
are giving to the Motor
attached to Port.B.

• test_motor is another
variable.

• If we had more than one
motor, we would name them
separately.

35

Our first look at Python!
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import Motor
from pybricks.parameters import Port

Initialize the EV3 Brick.
ev3 = EV3Brick()

Initialize a motor at port B.
test_motor = Motor(Port.B)

Write your program here

Play a sound.
ev3.speaker.beep()

Run the motor 500 degrees per second, for 5000 ms = 5 seconds
test_motor.run_time(500, 5000)

Here we are telling our brick
to perform some action. In
particular, we are telling ev3 to
use it’s speaker to play a beep
sound.

36

Our first look at Python!
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import Motor
from pybricks.parameters import Port

Initialize the EV3 Brick.
ev3 = EV3Brick()

Initialize a motor at port B.
test_motor = Motor(Port.B)

Write your program here

Play a sound.
ev3.speaker.beep()

Run the motor 500 degrees per second, for 5000 ms = 5 seconds
test_motor.run_time(500, 5000)

Here we are telling our motor
to perform some action. In
particular, we are telling it to
run_time, or run for 5 seconds.
The numbers control how fast
it spins and for how long.

37

Revisiting basic_movement
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import (Motor, TouchSensor, ColorSensor,
InfraredSensor, UltrasonicSensor, GyroSensor)
from pybricks.parameters import Port, Stop, Direction, Button, Color
from pybricks.tools import wait, StopWatch, DataLog
from pybricks.robotics import DriveBase
from pybricks.media.ev3dev import SoundFile, Image, ImageFile

Create your objects here.
ev3 = EV3Brick()

Initialize the motors.
left_motor = Motor(Port.B)
right_motor = Motor(Port.C)

Initialize the drive base.
robot = DriveBase(left_motor, right_motor,

wheel_diameter=56, axle_track=114)

Set eyes
ev3.screen.load_image(Image(ImageFile.NEUTRAL))

Go forward and backwards for one meter.
robot.straight(500)
ev3.speaker.beep()

robot.straight(-500)
ev3.speaker.beep()

Turn clockwise by 360 degrees and back again.
robot.turn(360)
ev3.speaker.beep()

robot.turn(-360)
ev3.speaker.say(“hello campers”)

38

Revisiting basic_movement
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import (Motor, TouchSensor, ColorSensor,
InfraredSensor, UltrasonicSensor, GyroSensor)
from pybricks.parameters import Port, Stop, Direction, Button, Color
from pybricks.tools import wait, StopWatch, DataLog
from pybricks.robotics import DriveBase
from pybricks.media.ev3dev import SoundFile, Image, ImageFile

Create your objects here.
ev3 = EV3Brick()

Initialize the motors.
left_motor = Motor(Port.B)
right_motor = Motor(Port.C)

Initialize the drive base.
robot = DriveBase(left_motor, right_motor,

wheel_diameter=56, axle_track=114)

Set eyes
ev3.screen.load_image(Image(ImageFile.NEUTRAL))

Go forward and backwards for one meter.
robot.straight(500)
ev3.speaker.beep()

robot.straight(-500)
ev3.speaker.beep()

Turn clockwise by 360 degrees and back again.
robot.turn(360)
ev3.speaker.beep()

robot.turn(-360)
ev3.speaker.say(“hello campers”)

Declare and initialize all variables.
Give names to the important
parts of our robots so we can
control them later.

39

Revisiting basic_movement
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import (Motor, TouchSensor, ColorSensor,
InfraredSensor, UltrasonicSensor, GyroSensor)
from pybricks.parameters import Port, Stop, Direction, Button, Color
from pybricks.tools import wait, StopWatch, DataLog
from pybricks.robotics import DriveBase
from pybricks.media.ev3dev import SoundFile, Image, ImageFile

Create your objects here.
ev3 = EV3Brick()

Initialize the motors.
left_motor = Motor(Port.B)
right_motor = Motor(Port.C)

Initialize the drive base.
robot = DriveBase(left_motor, right_motor,

wheel_diameter=56, axle_track=114)

Set eyes
ev3.screen.load_image(Image(ImageFile.NEUTRAL))

Go forward and backwards for one meter.
robot.straight(500)
ev3.speaker.beep()

robot.straight(-500)
ev3.speaker.beep()

Turn clockwise by 360 degrees and back again.
robot.turn(360)
ev3.speaker.beep()

robot.turn(-360)
ev3.speaker.say(“hello campers”)

Using our variables, we can tell
the robot to perform the desired
actions, like moving straight,
turning, displaying eyes, beeping,
and speaking.

40

Common Programming Mistakes

• Spelling matters!
• Punctuation matters!
• Indentation matters!
• Little mistakes can cause crazy behavior on your robots.
• Test your code often!

41

Visual Studio Projects on Brick

15

Getting started with LEGO® MINDSTORMS® Education EV3 MicroPython Version 2.0.0

Figure 2.9: Starting a program using the buttons on the EV3 Brick.

Open file browser Open project folder Run your program

Go to previous folder

1 2 3

4

 LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS logo are trademarks and/or copyrights of the LEGO Group.
©2019-2020 The LEGO Group.

42

Visual Studio Projects on Brick

43

Power Off Brick

44

Lab
• Step 1
• Build your robots. Follow the instructions carefully. Raise your hand

if you need help!
• Step 2
• Connect your robot to your computer using the USB cable. Open Visual

Studio. Try running the basic movement program on your robot. Raise
your hand if you need help!

• Step 3
• Make your robots dance and sing by adding more commands! We’ll demo

your creations to your parents at dismissal. (Demo fun_actions)
• Step 4
• Don’t forget to clean up your workspace before you go. Please plug in

your brick!

45

Fun Robot Actions
• Movement
• robot.straight(x) – drive forward for x millimeters

• robot.drive(x, y) – drive forward at speed x and turn rate y

• robot.turn(x) – turn in place x degrees

• Light
• ev3.light.on(color) – turns light on to specific color (try Color.RED, Color.GREEN, Color.YELLOW)

• ev3.light.off() – turns off the light

• Sound
• ev3.speaker.beep() – beep speaker once

• ev3.speaker.say(“text”) – speak the text specified

• ev3.speaker.play_notes(notes) – plays a sequence of musical notes. For example, try
[‘C4/4’, ‘D4/4’, ‘E4/4’, ‘F4/4’, ‘G4/4’]. This plays C, D, E, F, G as quarter notes (/4)

• Screen
• ev3.screen.load_image(Image(ImageFile.NEUTRAL)) – sets “neutral” eyes. Also try ANGRY,

DIZZY, SLEEPING, EVIL.

46

Lunch break!

• After lunch, we’ll build your robots!

